화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.1, 29-41, February, 2018
물/유기용매 분리를 위한 증류-투과증발막 혼성공정의 최적화
Optimization of Distillation-Pervaporation Membrane Hybrid Process for Separation of Water/Organic Solvent Mixtures
E-mail:
초록
공비점이 존재하거나 상대휘발도 차이가 적은 2성분 혼합물은 단일 증류탑으로 분리하기 어렵다. 이때 혼합물에서 분리가 어려운 영역을 투과증발막을 사용하여 분리하면 효율적인 공정을 설계할 수 있다. 본 연구에서는 물-유기용매 혼합물을 분리하기 위한 증류-투과증발막 혼성공정을 제시하고, 물-초산 혼합물과 물-에탄올 혼합물의 분리공정을 각각 모사하였다. 증류탑 상부 흐름이 친수성 막을 통과하여 물을 높은 순도로 분리하는 공정을 모사하였다. 실험과 문헌에서 얻은 친수성 막의 투과도를 토대로 막 모델을 만들어 막 면적을 계산하였다. 제시한 공정의 최적화를 위해, 목적함수를 연간 총 비용으로 정하고 주요 설계 변수들을 최적화 변수로 하여 최적화 문제를 구성하였다. 또한, 혼성공 정의 각 최적화 변수의 변화에 따른 목적함수 값의 변화 추세를 나타내고 최적화 변수를 최적점에 가까운 값으로 쉽게 추측할 수 있는 방법을 제안하였다.
Separating a mixture having an azeotrope or low relative volatility with single distillation column is difficult. Separating water-acetic acid mixture and water-ethanol mixture with a distillation column consumes a lot of energy. Pervaporation membrane can be used to separate the mixture in the concentration region where separation is difficult with distillation. We simulated a distillation-membrane hybrid process where membrane is located on the head of the distillation column for efficient separation of water-acetic acid and water-ethanol mixture. Permeability data were obtained from experiments and literature. We formulated an optimization problem for the process with total annual cost (TAC) as an objective function and major design variables as optimization variables. Major optimization variable affecting TAC of the hybrid process was shown to be distillate concentration. We also suggested a simplified optimization procedure to get a close-to-optimal solution.
  1. Lipnizki F, Field RW, Ten PK, J. Membr. Sci., 153(2), 183 (1999)
  2. Patel PK, Patel Y, Int. J. Current Research, 7(12), 23607 (2015)
  3. Kookos IK, Ind. Eng. Chem. Res., 42(8), 1731 (2003)
  4. Vane LM, Alvarez FR, J. Chem. Technol. Biotechnol., 83(9), 1275 (2008)
  5. Hommerich U, Rautenbach R, J. Membr. Sci., 146(1), 53 (1998)
  6. Servel C, Roizard D, Favre E, Horbez D, Ind. Eng. Chem. Res., 53(18), 7768 (2014)
  7. Huang Y, Baker RW, Vane LM, Ind. Eng. Chem. Res., 49(8), 3760 (2010)
  8. Lu SY, Chiu CP, Huang HY, J. Membr. Sci., 176(2), 159 (2000)
  9. Hong H, Chen L, Zhang Q, He F, Mater. Des., 34, 732 (2012)
  10. Bai J, Founda AE, Matsuura T, Hazlett JD, J. Appl. Polym. Sci., 48, 999 (1993)
  11. Wilson GM, J. Am. Chem. Soc., 86(2), 127 (1964)
  12. Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
  13. Maurer G, Prausnitz JM, Fluid Phase Equilib., 2(2), 91 (1978)
  14. Fredenslund A, Jones RL, Prausnitz JM, AIChE J., 21(6), 1086 (1975)
  15. McCabe WL, Smith JC, Harriot P, McGraw-Hill Korea, 741-778(2005).
  16. Win NN, Bosch P, Friedl A, ASEAN Engineering Journal Part B, 2(2), 28 (2012)
  17. Lee Hao-Yeh, Li Sheng-Yu, Chen Cheng-Liang, Ind. Eng. Chem. Res., 55(32), 8802 (2016)
  18. Douglas JM, McGraw-Hill, New York. 1988.
  19. Santoso A, M.S. Thesis, National Taiwan University, Taiwan, 2010.
  20. Woods DR, McMaster University: Hamilton, Ontario, Canada, 1983.
  21. Oliveira TAC, Cocchini U, Scarpello JT, Livingston AG, J. Membr. Sci., 183(1), 119 (2001)
  22. Szitkai Z, Lelkes Z, Rev E, Fonyo Z, Chem. Eng. Process., 41(7), 631 (2002)