Polymer(Korea), Vol.42, No.2, 298-302, March, 2018
실크 피브로인과 젤란검 하이드로젤에서 연골 재생 효과에 대한 연구
Effect of Cartilage Regeneration on Gellan Gum and Silk Fibroin
E-mail:
초록
최근 조직 공학에서 새로운 생체 재료로 관심을 받고 있는 젤란검은 포도당, 글루콘산, 람노스로 구성된 다당류로서 연골 조직 재생의 대체재로 각광받고 있다. 실크 피브로인은 생체적합성과 생분해성이 뛰어나며 우수한 기계적 특성을 갖고 있다. 본 실험은 실크 피브로인이 연골 재생에 미치는 영향을 확인하기 위해 2 wt% 젤란검 수용액에 2 wt% 실크 피브로인 수용액을 100/0, 70/50, 50/50 비율로 첨가하여 하이드로젤 지지체를 제조하였으며, 실크 피브로인 수용액이 다양한 함량으로 제작된 젤란검 하이드로젤 지지체의 물리적 특성을 알아보고자 압축강도, 다공도, FTIR 등을 실시하였고 연골 세포의 증식과 유전자 발현을 평가하기 위해 MTT, bio-SEM, RT-PCR을 실시한 결과 50/50 비율의 젤란검/실크 피브로인(GG/SF) 하이드로젤 지지체에서 높은 세포 증식률과 우수한 연골재생 효과를 확인하였다. 결과적으로 50/50 비율의 젤란검/실크 피브로인 하이드로젤 지지체가 연골 조직 재생에 긍정적으로 작용함을 확인하였다.
Recently, in tissue engineering gellan gum as a polysaccharide composed of glucose, glutaric acid, and rhamnose is proposed as a substitute for cartilage regeneration applications. Silk fibroin has biocompatibility, biodegradability and excellent mechanical properties. In this work, to confirm the effect of silk fibroin on cartilage regeneration, hydrogel scaffolds were prepared by using 2 wt% silk fibroin (SF)/2 wt% gelln gum (GG) at weight ratio of 100/0, 70/30, and 50/50. The characterizations of scaffolds were implemented by FTIR, compressive strength, porosity, and SEM. Cell proliferation and gene expression were evaluated by MTT, bio-SEM, RT-PCR. As a result, SF50/GG50 scaffold was confirmed as an excellent scaffold for cartilage tissue regeneration.
- Oliveira JT, Santos TC, Martins L, Silva MA, Marques AP, Castro AG, Neves NM, Reis RL, J. Tissue Eng. Regen. Med., 7, 493 (2009)
- Hunt SA, Jazrawi LM, Sherman, J. Am. Acad. Orthop. Surg., 10, 356 (2002)
- Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM, Clin. Orthop. Relat. Res., 342, 254 (1997)
- Cancedda R, Dozin B, Giannoni P, Quarto R, Matrix. Biol., 22, 81 (2003)
- Risbud MV, Sittinger M, Trends Biotechnol., 20, 351 (2002)
- Tuzlakoglu K, Alves CM, Mano JF, Reis RL, Macromol. Biosci., 4, 811 (2004)
- Lee CR, Breinan HA, Nehrer S, Spector M, Tissue Eng., 6, 555 (2000)
- Hutmacher DW, Biomaterials, 21, 2529 (2000)
- Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL, J. R. Soc. Interface, 93, 852 (2010)
- Smith AM, Shelton RM, Perrie Y, Harris JJ, J, A. M. Smith, R. M. Shelton, Y. Perrie, and J. J. Harris, 22, 241 (2007)
- Mori H, Tsukada M, Mol. Biotechnol., 74, 95 (2000)
- Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH, Biomaterials, 26, 3385 (2005)
- Meinel L, Hofmann S, Karageorgiou V, Meinel L, Kirker-Head C, Mc-Cool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL, Biomaterials, 26, 147 (2005)
- Ju HW, Lee OJ, Lee JM, Moon BM, Park YR, Lee MC, Kim SH, Chao JR, Ki CS, Park CH, Int. J. Biol. Macromol., 85, 29 (2016)
- Maunney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL, Biomaterials, 28, 5280 (2007)
- Kim EY, Lee CJ, Kim SY, Jang NK, Song JE, Joo CK, Khang G, Int. J. Tissue Regener, 5, 69 (2014)
- Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC, Biomaterials, 32, 5773 (2011)
- Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL, Biomaterials, 26, 7082 (2005)
- Wang Y, Blasioli DJ, Kim HJ, Kim HK, Kaplan DL, Biomaterials, 27, 4434 (2006)
- Karvinen J, Koivisto JT, Jonkkari I, Kellomaki M, J. Mech. Behav. Biomed. Mater., 71, 383 (2017)
- Sudhamani SR, Prasad MS, Sankar KU, Food Hydrocolloids, 17, 245 (2003)
- Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL, Biomaterials, 31, 7494 (2010)
- Kim DK, Kim JI, Sim BR, Khang G, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 78, 571 (2017)
- Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G, Int. J. Biol. Macromol., 94, 14 (2017)
- Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL, Acta Biomater., 8, 289 (2012)
- Kasoju N, Bora U, Adv. Healthc. Mater., 1, 393 (2012)