화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.2, 237-243, April, 2018
고정층 흡착 반응기에서 폐감귤박 활성탄의 표면 화학적 특성과 세공구조에 따른 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성
Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor
E-mail:
초록
활성화제 KOH, NaOH 및 ZnCl2를 사용하여 폐감귤박으로부터 제조한 활성탄인 WCK-AC, WCN-AC, WCZ-AC의 표면 화학적 특성을 검토하고, 대상가스인 아세톤, 벤젠 및 메틸메르캅탄(MM)에 대한 흡착량과 활성탄의 비표면적, 세공부피 및 세공크기와의 상관관계를 살펴보았다. 이들 활성탄에 대한 XPS 분석결과에 의하면 graphite 및 phenolic이 C1의 주요 표면 작용기였으며, 작용기인 phenol, carbonyl 및 carboxyl의 합은 WCK-AC > WCN-AC > WCZ-AC의 순서로 증가하였다. 고정층 흡착반응기에서 3가지 대상가스에 대한 흡착실험으로부터 얻어진 파과곡선은 Yoon과 Nelson에 의해 제안된 경험식에 의해 잘 모사되었다. 작용기의 합이 큰 값을 갖는 활성탄일수록 아세톤, 벤젠 및 MM에 대한 흡착성능이 더 컸다. 비표면적 및 세공부피가 크고 세공크기가 작은 활성탄일수록 흡착성능이 우수하였으며, 특히 본 연구에서 사용된 활성탄들의 흡착성능을 가장 잘 나타내는 기준은 비표면적이었다.
The surface chemistry of WCK-AC, WCN-AC and WCZ-AC which are activated carbons prepared from waste citrus peel using KOH, NaOH, and ZnCl2 as activating chemicals were investigated. Also the relationships between the adsorption capacities of the target gases such as acetone, benzene and methyl mercaptan (MM) by the prepared activated carbons and the pore characteristics of each activated carbon were examined. According to XPS analysis of the prepared activated carbons, graphite and phenolic were the main surface functional groups of C1, and the sum of phenol, carbonyl and carboxyl groups increased in the order of WCK-AC > WCN-AC > WCZ-AC. The breakthrough curves obtained from the adsorption experiments for the three target gases in the fixed bed adsorption reactor were well simulated by the empirical equations proposed by Yoon and Nelson. The adsorption capacity for acetone, benzene and MM was larger for activated carbons with the larger sum of surface functional groups. The larger the specific surface area and the pore volume of activated carbons and the smaller the pore size, the better the adsorption performance. In particular, the specific surface area was the best criterion for the adsorption performance of activated carbons used in this study.
  1. Kazemipour M, Ansari M, Tajrobehkar S, Majdzadeh M, Kermani HR, J. Hazard. Mater., 150, 322 (2008)
  2. Mohamed MM, J. Colloid Interface Sci., 272(1), 28 (2004)
  3. Ahmad MA, Daud WMAW, Aroua MK, Colloids Surf. A: Physicochem. Eng. Asp., 312, 131 (2008)
  4. Valix M, Cheung WH, McKay G, Chemosphere, 56, 493 (2004)
  5. Tseng RL, Tseng SK, Wu FC, Colloids Surf. A: Physicochem. Eng. Asp., 279, 69 (2006)
  6. Ahmad AA, Hameed BH, J. Hazard. Mater., 172(2-3), 1538 (2009)
  7. Khaled A, El Nemr A, EI-Sikaily A, Abdelwahab O, J. Hazard. Mater., 165(1-3), 100 (2009)
  8. Kannan N, Sundaram MM, Dyes Pigment., 51, 25 (2001)
  9. Kang KH, Kam SK, Lee MG, J. Environ. Sci. Int., 16, 1091 (2007)
  10. Kang KH, Kam SK, Lee MG, J. Environ. Sci. Int., 16, 1279 (2007)
  11. Kam SK, KanG KH, Lee MG, Appl. Chem. Eng., 28(6), 649 (2017)
  12. Cheng T, Jiang Y, Zhang Y, Liu S, Carbon, 42, 3081 (2004)
  13. Huang Z, Kang F, Liang K, Hao J, J. Hazard. Mater., B98, 107 (2003)
  14. Chiang YC, Chiang PC, Huang CP, Carbon, 39, 523 (2001)
  15. Harikrishnan R, Srinivasan MP, Ching CB, AIChE J., 44(12), 2620 (1998)
  16. Li L, Liu SQ, Liu JX, J. Hazard. Mater., 192(2), 683 (2011)
  17. Lim JK, Lee SW, Kam SK, Lee DW, Lee MG, J. Environ. Sci. Int., 14, 61 (2005)
  18. Lee SW, Bae SK, Kwon JH, Na YS, An CD, Yoon YS, Song SK, J. Korean Soc. Environ. Eng., 27, 620 (2005)
  19. Lee MG, Lee SW, Lee SH, Korean J. Chem. Eng., 23(5), 773 (2006)
  20. Ahmad MA, Daud WMAW, Aroua MK, Colloids Surf. A: Physicochem. Eng. Asp., 312, 131 (2008)
  21. Hafshejani MK, Langari A, Khazaei M, Life Sci. J., 10, 3658 (2013)
  22. Jiun-Horng T, Hsiu-Mei C, Guan-Yinag H, Hung-Lung C, J. Hazard. Mater., 154(1-3), 1183 (2008)
  23. Bansode RR, Losso JN, Marshall WE, Rao RM, Portier RJ, Bioresour. Technol., 90(2), 175 (2003)
  24. Kam SK, KanG KH, Lee MG, Appl. Chem. Eng., 28(6), 663 (2017)
  25. Kam SK, Kang KH, Lee MG, Appl. Chem. Eng., 29(1), 28 (2018)
  26. Huang ZH, Kang F, Zheng YP, Yang JB, Liang KM, Carbon, 40, 1363 (2002)
  27. Thomas JM, Evans EL, Barber M, Swift P, Trans. Faraday Soc., 67, 1875 (1971)
  28. Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marin F, Carbon, 38, 1995 (2000)
  29. Yoon JH, Nelson GO, AIHA J., 45, 509 (1984)
  30. Ruthven DM, Principles of Adsorption and Adsorption Processes, p. 433, Wiley, NY, USA (1984).