- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.29, No.3, 253-257, June, 2018
DNA 기반 금속 나노 와이어의 제작기술
DNA Metallization for Nanoelectronics
E-mail:
초록
DNA를 기반으로 한 금속 나노와이어는 전기적인 물성은 떨어지지만, 제작 방식이 간단하고, 대면적에서 대량으로 제작할 수 있으며, 유기 반응을 통해 분자 소자 제작의 기판으로도 사용가능한 차세대 재료로 전망된다. 본 총설에서는 DNA 금속화 반응을 이용한 나노와이어의 제작 및 3차원 구조체의 제작 기술에 대해 소개하고, 이와 관련한 연구 현황과 발전 방향에 대해 논의하고자 한다.
DNA metallization has been emerged as a candidate for fabricating nanocircuits because of its simple process over a large area on a surface. With unique properties, DNA can be an excellent template to achieve molecular electronics. Thus, we introduced the preparation and properties of DNA metallization, and also suggested future directions in this review.
- Gates EP, Dearden AM, Woolley AT, Crit. Rev. Anal. Chem., 44, 354 (2014)
- Samsung Newsroom, https://news.samsung.com/global/samsung-electronics-breaks-ground-on-new-euv-line-in-hwaseong (accessed April 27, 2018).
- Rothemund PWK, Nature, 440, 297 (2006)
- Braun E, Eichen Y, Sivan U, Ben-Yoseph G, Nature, 391(6669), 775 (1998)
- Deng Z, Mao C, Nano Lett., 3, 1545 (2003)
- Michalet X, Nano Lett., 1, 341 (2001)
- Keren K, Krueger M, Gilad R, Ben-Joseph G, Sivan U, Braun E, Science, 297, 72 (2002)
- Lee JK, Jung YH, Stoltenberg RM, Tok JBH, Bao ZN, J. Am. Chem. Soc., 130(39), 12854 (2008)
- Yokota H, Sunwoo J, Sarikaya M, Engh GVD, Abersold R, Anal. Chem., 71, 4418 (1999)
- Yokota H, Johnson F, Lu H, Robinson RM, Belu AM, Garrison MD, Ratner BD, Trask BJ, Miller DL, Nucleic Acids Res., 25, 1064 (1997)
- Yu G, Kushwaha A, Lee JK, Shaqfeh ESG, Bao Z, ACS Nano, 5, 275 (2011)
- Nakao H, Hayashi H, Yoshino T, Sugiyama S, Otobe K, Ohtani T, Nano Lett., 2, 475 (2002)
- Filoramo A, Nanomaterials to the Atomic Scale, p. 17-32, Springer-Verlag, NY, USA (2015).
- Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH, Science, 301, 1882 (2003)
- Harnack O, Ford WE, Yasuda A, Wessels JM, Nano Lett., 2, 919 (2002)
- Ongaro A, Griffin F, Beecher P, Nagle L, Iacopino D, Quinn A, Redmond G, Fitzmaurice D, Chem. Mater., 17, 1959 (2005)
- Mertig M, Ciacchi LC, Seidel R, Pompe W, Vita AD, Nano Lett., 2, 841 (2002)
- Lund J, Dong J, Deng Z, Mao C, Parviz BA, Nanotechnology, 17, 2752 (2006)
- Richter J Mertig M, Pompe W, Appl. Phys. Lett., 78, 536 (2001)
- Nguyen K, Monteverde M, Filoramo A, Goux-Capes L, Lyonnais S, Jegou P, Viel P, Goffman M, Bourgoin JP, Adv. Mater., 20(6), 1099 (2008)
- Monson CF, Woolley AT, Nano Lett., 3, 359 (2003)
- Aherne D, Satti A, Fitzmaurice D, Nanotechnology, 18, 125205 (2007)
- Becerril HA, Ludtke P, Willardson BM, Woolley AT, Langmuir, 22(24), 10140 (2006)
- Gu Q, Cheng C, Haynie DT, Nanotechnology, 16, 1358 (2005)
- Uprety B, Jensen J, Aryal BR, Davis RC, Woolley AT, Harb JN, Langmuir, 33(39), 10143 (2017)
- Choi J, Chen H, Li F, Yang L, Kim SS, Naik RR, Ye PD, Choi JH, Small, 11, 5520 (2015)
- Lee JK, Kim MR, Choi IS, Jung YH, Kim YG, Bull. Korean Chem. Soc., 34, 986 (2013)
- Ke YG, Ong LL, Shih WM, Yin P, Science, 338(6111), 1177 (2012)
- Helmi S, Ziegler C, Kauert DJ, Seidel R, Nano Lett., 14, 6693 (2014)