화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.3, 264-269, June, 2018
Polysulfone에 Carbon Nanotubes, Tributyl Phosphate와 Di-(2-ethylhexyl)-phosphoric Acid를 고정화한 하이브리드 비드의 제조와 Sr(II)의 제거 특성
Preparation of Hybrid Beads Containing Polysulfone Modified with Carbon Nanotubes, Tributyl Phosphate and Di-(2-ethylhexyl)-phosphoric Acid and Removal Characteristics of Sr(II)
E-mail:
초록
Polysulfone (PSf)에 탄소 나노 튜브(CNTs, carbon nano tubes)와 두 가지 추출제, di-(2-ethylhexyl)-phosphoric acid (D2EHPA)와 tributyl phosphate (TBP)를 고정화시킨 PSf/D2EHPA/TBP/CNTs 비드를 제조하였다. 제조한 비드의 특성은 SEM, TGA 및 FTIR로 분석하였다. 제조한 PSF/D2EHPA/TBP/CNTs 비드에 의한 Sr(II)의 제거속도는 유사 2차 속도식에 의해 잘 설명되었으며, Langmuir 등온식으로 구한 Sr(II)의 최대 제거 용량은 5.52 mg/g이었다. 본 연구에서 제조한 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율은 TBP가 첨가되지 않은 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율 보다 크게 향상되는 결과를 나타내었다.
PSf/D2EHPA/TBP/CNTs beads were prepared by immobilizing carbon nanotubes (CNTs) and two extractants, di-(2-ethylhexyl)- phosphoric acid (D2EHPA) and tributyl phosphate (TBP) on polysulfone (PSf). The prepared PSf/D2EHPA/TBP/CNTs beads were characterized by SEM, TGA, and FTIR. The removal rate of Sr(II) by PSf/D2EHPA/TBP/CNTs beads was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was found to be 5.52 mg/g. The results showed that the removal efficiency of Sr(II) by PSf/D2EHPA/CNTs beads prepared in this study was significantly improved compared to that of using PSf/D2EHPA/CNTs beads without TBP.
  1. Ahmadpour A, Zabihi M, Tahmasbi M, Bastami TR, J. Hazard. Mater., 182(1-3), 552 (2010)
  2. Wang M, Xu L, Peng J, Zhai ML, Li JQ, Wei GS, J. Hazard. Mater., 171(1-3), 820 (2009)
  3. Ren ZQ, Zhang WD, Meng HL, Liu YM, Dai Y, J. Chem. Eng. Data, 52(2), 438 (2007)
  4. Darvishi D, Haghshenas DF, Etemadi S, Alamdari EK, Sadrnezhaad SK, Hydrometallurgy, 88, 92 (2007)
  5. Belkhouche NE, Didi MA, Vellemin D, Solvent Extraction Ion Exch., 23, 677 (2005)
  6. Sahu KK, Das RP, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 28(2), 181 (1997)
  7. Haghshenas FD, Darvishi D, Etemadi S, Hollagh ARE, Alamdari EK, Salardini AA, Hydrometallurgy, 98, 143 (2009)
  8. Vahidi E, Rashchi F, Moradkhani D, Miner. Eng., 22(2), 204 (2009)
  9. Ochoa NA, Illanes C, Marchese J, Basualto C, Valenzuela F, Sep. Purif. Technol., 52(1), 39 (2006)
  10. Ciopec M, Davidescu CM, Negrea A, Lupa L, Negrea P, Popa A, Chem. Bull., 56, 43 (2011)
  11. Kam SK, Jeon JW, Lee MG, J. Environ. Sci. Int., 23(11), 1843 (2014)
  12. Kam SK, Jeon JW, Lee MG, J. Environ. Sci. Int., 24(3), 267 (2015)
  13. Lee CH, Lee MG, J. Environ. Sci. Int., 25(11), 1485 (2016)
  14. Tae G, Kornfield JA, Hubbell JA, Biomaterials, 26, 5259 (2005)
  15. Kebiche-Senhadji O, Mansouri L, Tingry S, Seta P, Benamor M, J. Membr. Sci., 310(1-2), 438 (2008)
  16. Yadav KK, Singh DK, Anitha M, Varshney L, Singh H, Sep. Purif. Technol., 118, 350 (2013)
  17. Ozcan S, Tor A, Aydin ME, Desalination, 259(1-3), 179 (2010)
  18. Ma YX, Li YF, Yang LQ, Zhao GH, Polym. Compos., 34(2), 204 (2013)
  19. Li YH, Di ZC, Luan ZK, Ding J, Zuo H, Wu XQ, Xu CL, Wu DH, J. Environ. Sci., 16(2), 208 (2004)
  20. Vellaichamy S, Palanivelu K, J. Hazard. Mater., 185(2-3), 1131 (2011)
  21. Lee MG, Yun JW, Suh JH, Korean Chem. Eng. Res., 55(6), 854 (2017)
  22. Wu FC, Tseng RL, Juang RS, Water Res., 35(3), 613 (2001)
  23. El-Kamash AM, Zaki AA, Geleel MAE, J. Hazard. Mater., B127, 211 (2005)