화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.3, 303-306, June, 2018
재사용이 가능한 MFB로부터 Aromatic Ester가 도입된 4,4’-Di((E)-styryl)-1,1’-biphenyl의 골격을 갖는 새로운 Fluorescent Whitening Agent의 개발 연구
Development of New Fluorescent Whitening Agent with 4,4’-Di((E)-styryl)-1,1’-biphenyl Skeleton Attached with Aromatic Ester from Recyclable Source MFB
E-mail:
초록
DMT 생산과정의 부산물로서 폐기 처리되어 왔던 methyl 4-formylbenzoate (MFB)를 출발 물질로 하여 고급 형광 증백제 family와 동일한 4,4’-di((E)-styryl)-1,1’-biphenyl 기본 골격을 갖고 aromatic ester가 도입된 새로운 형광 증백제 (fluorescent whitening agent) 후보 물질 6종을 합성하였다. 후보 물질 6종은 MFB 및 그의 유도체와 tetraethyl biphenyl-4,4’-diylbis(methylene)diphosphonate와 Wittig-Horner 반응을 이용하여 합성하였다. 합성된 6종에 대하여 형광증 백제로의 가능성을 확인하기 위하여 UV 스펙트럼을 기록하여 흡광 계수를 얻었으며, 6종 모두 전반적으로 기존 상용 제품(log ε 4.85)과 유사한 몰 흡광 계수(log ε 4.59~5.00)를 보여주고 있다. 특별히 화합물 디메톡시 페닐그룹을 갖는 16, 17은 기존 상용 제품보다 우수한 몰흡광 계수를 나타내고 있어 상용화를 위한 현장 테스트를 진행할 예정이다.
Methyl 4-formylbenzoate (MFB), a by-product of the DMT production process, which has been disposed, was used as a starting material for the synthesis of six new fluorescent whitening agent’s candidates with 4,4’-di((E)-styryl)-1,1’-biphenyl skeleton attached with an aromatic ester, the same as that of the commercial product family. All candidates were synthesized by the reaction of MFB, and its derivatives with tetraethyl biphenyl-4,4’-diylbis(methylene)diphosphonate using Wittig-Horner reaction. UV spectra for all candidates were recorded and the data were used for calculating the molar absorptivity in order to confirm the usability as a fluorescent whitening agent. All of them showed overall molar extinction coefficients (log ε 4.59~5.00) similar to those of conventional commercial products (log ε 4.85). In particular, compounds 16 and 17 having a dimethoxyphenyl group exhibited a molar extinction coefficient superior to those of conventional commercial products, and thus a field testing for commercialization will be conducted.
  1. Mitchell AR, Pagoria PF, Schmidt RD, 27th International Annual Conference ICT on Energetic Materials, June 25-28, Karlsruhe, Germany (1996).
  2. Mitchell AR, Pagoria PF, Schmidt RD, 29th International Annual Conference ICT on Energetic Materials. June 30-July 3, Karlsruhe, Germany (1998).
  3. Kim KD, Yu Y, Jeong HJ, Ham MJ, Kim KL, Kim AN, Davgajantsan O, Park GS, Kim SC, Bull. Korean Chem. Soc., 33, 4275 (2012)
  4. Kim SH, Ryu Y, Kim JC, Kim SC, Appl. Chem. Eng., 26(5), 621 (2015)
  5. Kim KD, Ryu Y, Kim SC, Appl. Chem. Eng., 25(3), 337 (2014)
  6. Ryu Y, Kim JC, Ham MJ, Kim SC, Appl. Chem. Eng., 27(2), 195 (2016)
  7. Kim JC, Ryu Y, Kim SC, Appl. Chem. Eng., 27(5), 508 (2016)
  8. Chung HJ, Yang YS, Kim SC, Appl. Chem. Eng., 28(3), 294 (2017)
  9. Weber K, Luethi C, US Patent 3,825,534 (1974).
  10. Siegrist AE, Liechti P, Meyer HR, Weber K, US Patent 3,991,049 (1976).
  11. Guglielmetti L, Meyer HR, Reinehr D, Weber K, US Patent 4,867,906 (1989).
  12. Sundberg RJ, Buckowork PA, Holcombe FO, J. Org. Chem., 32, 2938 (1967)
  13. Pommer H, Siebel HP, Schwen R, Stilz W, US Patent 3,177,153 (1965).
  14. StilzW, Pommer H, US Patent 3,177,208 (1965).