화학공학소재연구정보센터
Renewable Energy, Vol.124, 144-154, 2018
Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation
Biodiesel production using supercritical methanol in the absence of catalyst has been analysed by studying the main factors affecting biodiesel yield. A quadratic polynomial model has been developed using Response Surface Methodology (RSM). Box-Behnken Design (BBD) has been used to evaluate the influence of four independent variables i.e. methanol to oil (M:O) molar ratio, temperature, pressure and time on biodiesel yield. The optimum biodiesel yield is 91% at M:O molar ratio, temperature, pressure and reaction time of 37:1, 253.5 degrees C, 198.5 bar and 14.8 min, respectively. Overall reaction kinetics has been studied at optimum conditions concluding a pseudo first order reaction with reaction rate constant of 0.0006s-1. Moreover, thermodynamics of the reaction has been analysed in the temperature range between 240 and 280 degrees C concluding frequency factor and activation energy of 4.05s(-1) and 50.5 kj/mol, respectively. A kinetic reactor has been simulated on HYSYS using the obtained kinetic data resulting in 91.7% conversion of triglycerides (TG) with 0.2% relative error from the experimental results. (C) 2017 Elsevier Ltd. All rights reserved.