화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.66, 254-261, October, 2018
In vitro 3D skin model using gelatin methacrylate hydrogel
E-mail:,
Interests in in vitro skin models have been growing. Collagen, which is a main scaffold material for in vitro 3D skin models, has weak mechanical properties, often resulting in undesirable contraction. The physiological characteristics of the skin models often depend on the matrix in which cells are cultured. In this study, we developed a 3D skin model using gelatin methacrylate. The mechanical and transport properties were studied, and attachment and growth of fibroblasts and keratinocytes were examined. Fibroblasts preferred softer matrix, whereas HaCaT cells preferred harder matrix of gelatin methacrylate. This study provides information for developing in vitro skin models.
  1. Hofer T, et al., Arch. Toxicol., 78(10), 549 (2004)
  2. Reijnders CMA, et al., Tissue Eng. A, 21(17-18), 2448 (2015)
  3. Danilenko DM, Phillips GDL, Diaz D, Toxicol. Pathol., 44(4), 555 (2016)
  4. Matsusaki M, et al., J. Biomed. Mater. Res. A, 103(10), 3386 (2015)
  5. Rhee S, Exp. Mol. Med., 41(12), 858 (2009)
  6. Chau DYS, et al., Biofabrication, 5(3) (2013)
  7. Schreier T, Degen E, Baschong W, Res. Exp. Med. (Berl.), 193(4), 195 (1993)
  8. Kollisch G, et al., Immunology, 114(4), 531 (2005)
  9. Sun T, et al., J. Biotechnol., 122(3), 372 (2006)
  10. Witte RP, Kao WYJ, Biomaterials, 26(17), 3673 (2005)
  11. Birgersdotter A, Sandberg R, Ernberg I, Semin. Cancer Biol., 15(5), 405 (2005)
  12. Ackermann K, et al., Skin Pharmacol. Physiol., 23(2), 105 (2010)
  13. Lee SH, Shim KY, Kim B, Sung JH, Biotechnol. Prog., 33(3), 580 (2017)
  14. Weigelt B, Bissell MJ, Semin. Cancer Biol., 18(5), 311 (2008)
  15. Debnath J, Brugge JS, Nat. Rev. Cancer, 5(9), 675 (2005)
  16. Abbott A, Nature, 424(6951), 870 (2003)
  17. Schmeichel KL, Bissell MJ, J. Cell Sci., 116(12), 2377 (2003)
  18. Zhao X, et al., Adv. Healthc. Mater., 5(1), 108 (2016)
  19. Li Y, et al., J. Invest. Dermatol., 135(9), 2181 (2015)
  20. Ng KW, Hutmacher DW, Biomaterials, 27(26), 4591 (2006)
  21. Galis ZS, Khatri JJ, Circ. Res., 90(3), 251 (2002)
  22. Van den Steen PE, et al., Crit. Rev. Biochem. Mol. Biol., 37(6), 375 (2002)
  23. Nichol JW, et al., Biomaterials, 31(21), 5536 (2010)
  24. Shim KY, Kim SH, Lee DW, Kim BS, Kim TH, Jung YM, Choi NK, Sung JH, J. Ind. Eng. Chem., 50, 183 (2017)
  25. Lee AG, Arena CP, Beebe DJ, Palecek SP, Biomacromolecules, 11(12), 3316 (2010)
  26. Chen MB, et al., Lab Chip, 13, 2591 (2013)
  27. Falk B, Garramone S, Shivkumar S, Mater. Lett., 58(26), 3261 (2004)
  28. Hinz B, et al., Mol. Biol. Cell, 12(9), 2730 (2001)
  29. Tamariz E, Grinnell F, Mol. Biol. Cell, 13(11), 3915 (2002)
  30. Sethi KK, et al., Wound Repair Regen., 10(6), 397 (2002)
  31. Hu KK, et al., Biomed. Microdevices, 12, 627 (2010)
  32. Helary C, et al., Biomaterials, 31(3), 481 (2010)
  33. Bott K, et al., Biomaterials, 31(32), 8454 (2010)
  34. Wang ZX, et al., PLoS One, 7(7) (2012)