Korean Chemical Engineering Research, Vol.56, No.6, 856-863, December, 2018
순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응
Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions
E-mail:
초록
순산소 순환유동층 보일러에서 탈황을 위해 이용되는 석회석의 재탄산화 거동을 분석하기 위하여, 상용 순환유동층 보일러에서 이용되는 석회석 4종의 재탄산화 반응 특성을 열중량분석기(TGA-N1000)에서 고농도의 CO2 가스를 이용하여 분석하였다. 생석회의 재탄산화 반응은 반응온도(600~900 °C), 석회석의 CaCO3 함량(77~95%) 등의 조건에 따른 질량 변화를 통해 고찰되었다. 600~800 °C의 온도 영역에서는 반응 온도가 증가함에 따라 전환율이 증가하였고, 850~900 °C 에서는 반응 온도가 증가함에 따라 전환율이 감소하는 경향이 발견되었다. CaCO3 함량의 경우, 870 °C의 반응온도에서 뚜렷한 전환율의 차이를 보였다. 또한 기-고체반응속도 모델들에 적용하여 석회석의 재탄산화 반응을 모사하는 반응속도식을 제시하였다.
In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of CO2. Effect of reaction temperature (600~900 °C) and CaCO3 content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of 800 °C, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over 800 °C. In the case of CaCO3 content, the conversion was remarkably different at 870 °C. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.
- Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
- Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501 (2016)
- Lee SH, Kim JM, Eom WH, Ryi SK, Park JS, Baek LH, Chem. Eng. J., 207-208, 521 (2012)
- Lee SH, Park ST, Lee R, Hwang JH, Sohn JM, Korean J. Chem. Eng., 33(12), 3523 (2016)
- Garcia-Labiano F, Rufas A, de Diego LF, de las Obras-Loscertales M, Gayan P, Abad A, Adanez J, Fuel, 90(10), 3100 (2011)
- Jia L, Tan Y, Anthony EJ, Energy Fuels, 24, 910 (2010)
- Tian L, Yang W, Chen Z, Wang X, Yang H, Chen H, J. Energy Inst., 89(2), 264 (2016)
- Li W, Li S, Xu M, Wang X, J. Energy Inst., 91(3), 358 (2018)
- Liljedahl G, Turek D, Nsakala N, Mohn N, Fout T, In:Proceedings of the 31st International Technical Conference on Coal Utilization & Fuel Systems.
- Ramezani M, Tremain P, Doroodchi E, Moghtaderi B, E5nergy Procedia, 114, 259 (2017)
- Shin JH, Kim YR, Kook JW, Kwak IS, Park KI, Lee JM, Lee SH, Appl. Chem. Eng., 26(5), 557 (2015)
- Lee SH, Lee JM, KEPCO J., 2, 211 (2016)
- Jeong S, Lee KS, Keel SI, Yun JH, Kim YJ, Kim SS, Fuel, 161, 1 (2015)
- Chen HC, Zhao CS, Chem. Eng. Technol., 39(6), 1058 (2016)
- Wang LY, Li SY, Eddings EG, Ind. Eng. Chem. Res., 54(14), 3548 (2015)
- Kochel A, Cieplinska A, Szyrnanek A, Energy Fuels, 29(1), 331 (2015)
- Wang CB, Jia LF, Tan YW, Anthony EJ, Fuel, 87(7), 1108 (2008)
- Wang CB, Jia LF, Tan YW, Chem. Eng. Technol., 34(10), 1685 (2011)
- Symonds RT, Lu DY, Macchi A, Hughes RW, Anthony EJ, Chem. Eng. Sci., 64(15), 3536 (2009)
- Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
- Wen C, Ind. Eng. Chem., 60, 34 (1968)
- Ishida M, Wen C, AIChE J., 14, 311 (1968)
- Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1) (1985)
- Sun P, Grace JR, Lim CJ, Anthony EJ, Chem. Eng. J., 63, 47 (2008)
- Abanades JC, Alvarez D, Energy Fuels, 17(2), 308 (2003)
- de las Obras-Loscertales M, de Diego LF, Garcia-Labiano F, Rufas A, Abad A, Gayan P, Adanez J, Fuel, 137, 384 (2014)
- Kim YB, Gwak YR, Keel SL, Yun JH, Lee SH, Che. Eng. J., https://doi.org/10.1016/j.cej.2018.08.036.