화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.3, 475-484, May, 2019
Trans와 Cis-1,4-Cyclohexanedimethanol, Terephthaloyl Dichloride, 2,6-Naphthalenedicarboxylic Chloride로부터 합성된 폴리에스터 공중합체의 단일 단계 용액 중합과 열적 특성
Single-Step Solution Polymerization and Thermal Properties of Copolyesters Based on High Trans-1,4-Cyclohexanedimethanol, Terephthaloyl Dichloride, and 2,6-Naphthalene Dicarboxylic Chloride
E-mail:
초록
Poly(1,4-cyclohexylenedimethylene terephthalate-co-1,4-cyclohexylenedimethylene 2,6-naphthalenedicarboxylate) (PC#TN#) 폴리에스테르 공중합체를 안정제 및 금속 촉매를 넣지 않고 실온에서 단일 단계 용액 중합법으로 합성하였다. 얻어진 PC#TN# 폴리에스테르 공중합체의 화학 구조는 1H NMR로 규명하였고, 열특성은 TGA와 DSC로 확인하였다. 열적 특성은 diacid 부분의 나프탈렌 단위와 diol 부분의 cis/trans-1,4-cyclohexanedimethanol(CHDM) 이성질체의 비율을 변화시킴으로써 조절하였다. trans-CHDM의 증가된 함량은 유리 전이 온도(Tg) 및 용융 온도(Tm)를 증가시킬 수 있었다. 나프탈렌 단위의 함량을 증가시킴으로써 Tg는 선형적으로 증가하는 반면, Tm은 감소하다가 공 융점(2,6-naphthalene dicarboxylic acid 36 mole%)에 도달하면 증가하였다. 합성된 폴리에스테르 공중합체의 열적 분해 거동은 나프탈렌 및 trans-CHDM 단위를 증가시킴으로써 상당히 개선되었다.
In this work, two series of poly(1,4-cyclohexylenedimethylene terephthalate-co-1,4-cyclohexylenedimethylene 2,6-naphthalenedicarboxylate) (PC#TN#) copolyesters were synthesized by a simple one-step solution polymerization method at room temperature without the use of stabilizer and metallic catalyst. Chemical compositions of obtained PC#TN# copolyesters were confirmed by nuclear magnetic resonance (1H NMR) spectroscopy. Thermal properties of synthesized copolyesters were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Thermal properties of synthesized PC#TN# were controlled by varying the ratio of naphthalene units in diacid part and cis/trans-1,4-cyclohexanedimethanol (CHDM) isomers in diol part. An increased content of trans-CHDM can increase glass transition temperature (Tg) and melting temperature (Tm) profoundly. By increasing the content of naphthalene units, Tg increases linearly while Tm is first decreased then it starts to increase once the eutectic point (2,6-naphthalene dicarboxylic acid 36 mole%) is reached. Thermal degradation behavior of synthesized copolyesters was also significantly improved by increasing naphthalene and trans-CHDM units.
  1. Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS, Mobius ME, Young RJ, Coleman JN, Science, 354(6317), 1257 (2016)
  2. Behera BK, Arora H, J. Ind. Text., 38, 205 (2009)
  3. Shen W, Zhang X, Huang Q, Xu Q, Song W, Nanoscale, 6, 1622 (2014)
  4. Turner SR, J. Polym. Sci. A: Polym. Chem., 42(23), 5847 (2004)
  5. McIntyre JE, in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, pp 1-28 (2004).
  6. Bastioli C, Foa M, Floridi G, Farachi F, Milizia T, US Patent 6,727,342 B1 (2004).
  7. Carothers WH, Hill JW, J. Am. Chem. Soc., 54, 1557 (1932)
  8. Whinfiled JR, Dickson JT, US Patent 2,465,319 (1949).
  9. Kibler CJ, Bell A, Smith JG, J. Polym. Sci. A: Polym. Chem., 2, 2115 (1964)
  10. Turner SR, Seymour RW, in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, pp 267-288
  11. Koo JM, Hwang SY, Yoon WJ, Lee YG, Kim SH, Im SS, Polym. Chem., 6, 6973 (2015)
  12. Duling IN, US Patent 2,547,730 (1969).
  13. Hu B, Ottenbrite RM, in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, pp 335-359 (2004).
  14. Shi Y, Jabarin SA, J. Appl. Polym. Sci., 81(1), 11 (2001)
  15. Park SW, Hussain F, Kang SJ, Jeong JM, Kim JH, Polym. Korea, 42(4), 662 (2018)
  16. Kliesh H, Klein MO, Kuhmann B, US Patent 2012/0196111 A1 (2012).
  17. Liu F, Zhang J, Wang J, Liu X, Zhang R, Hu G, Na H, Zhu J, J. Mater. Chem. A, 3, 13637 (2015)
  18. Celli A, Marchese P, Sisti L, Dumand D, Sullalti S, Totaro G, Polym. Int., 62, 1210 (2013)
  19. Kiber CJ, Bell A, Smith JG, US Patent 2,901,466 (1959).
  20. Wang JG, Liu XQ, Jia Z, Sun LY, Zhang YJ, Zhu J, Polymer, 137, 173 (2018)
  21. Celli A, Marchese P, Sullalti S, Berti C, Barbiroli G, Macromol. Chem. Phys., 212, 1524 (2011)
  22. Berti C, Celli A, Marchese P, Marianucci E, Barbiroli G, Credico FD, Macromol. Chem. Phys., 209, 1333 (2008)
  23. Jeong YG, Jo WH, Lee SC, Macromolecules, 36(14), 5201 (2003)
  24. Vanhaecht B, Teerenstra MN, Suwier DR, Willem R, Biesemans M, Koning CE, J. Polym. Sci. A: Polym. Chem., 39(6), 833 (2001)
  25. Lyman DJ, J. Polym. Sci., 55, 507 (1961)
  26. Jeong YG, Jo WH, Lee SC, J. Polym. Sci. B: Polym. Phys., 42(1), 177 (2004)
  27. Hu L, Wu L, Song F, Li BG, Macromol. React. Eng., 4, 621 (2010)
  28. Lodha A, Ghadage RS, Ponrathnam S, Polymer, 38(25), 6167 (1997)
  29. Shah TH, Bhatty JI, Gamlen GA, Dollimore D, Polymer, 25, 1333 (1984)
  30. Karayannidis GP, Roupakias CP, Bikiaris DN, Achilias DS, Polymer, 44(4), 931 (2003)
  31. Shotyk W, Krachler M, Environ. Sci. Technol., 41, 1560 (2007)
  32. Pang K, Kotek R, Tonelli A, Prog. Polym. Sci, 31, 1009 (2006)
  33. Muller R, Trans. R. Soc. Trop. Med. Hyg., 97, 124 (2003)
  34. Kwolek SL, Morgan PW, J. Polym. Sci. A: Polym. Chem., 2, 2693 (1964)
  35. Giol ED, den Brande NV, Mele BV, Vlierberghe SV, Dubruel P, Polym. Int., 67, 292 (2018)
  36. Sublett BJ, US Patent 5,616,404 (1997).
  37. Starr L, J. Polym. Sci., Part A-1, 4, 3041 (1966)
  38. American Polymer Standards Co., Polymer Standards Catalog (1991).
  39. Paul A, Young DA, Kulhman GE, Partenheimer W, Scbammel WP, US Patent 4,950,786 (1990).
  40. Boye CA, J. Polym. Sci., 55, 275 (1961)
  41. Rogulska IS, Rokicki G, Polimery, 58, 85 (2013)
  42. Kasmi N, Papageorgiou GZ, Achilias DS, Bikiaris DN, Polymers, 10, 1 (2018)
  43. Ayyoob M, Lee DH, Kim JH, Nam SW, Kim YJ, Fibers Polym., 18, 407 (2017)
  44. Feng YC, Zhao H, Hao TH, Hu GH, Jiang T, Zhang QC, Materials, 10, 694 (2017)
  45. Jeong YG, Jo WH, Lee SC, Macromolecules, 36(11), 4051 (2003)
  46. MaTic EV, Kibler CJ, in Man-made Fibres: Science and Technology, pp 83-134 (1967).
  47. Mcneill IC, Bounekhel M, Polym. Degrad. Stabil., 34, 187 (1991)