화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.74, 79-85, June, 2019
Mechanically durable superhydrophobic PDMS-candle soot composite coatings with high biocompatibility
E-mail:
To realize practical applications, the development of superhydrophobic coatings with high durability against harsh environmental conditions has been of interest, especially coatings that are susceptible to mechanical damage. Herein, we present mechanically durable superhydrophobic polydimethylsiloxane (PDMS)-candle soot (CS)-based composite coatings through simple and rapid casting and soot processes, which can be fabricated on various substrates, such as glass, woods, stainless steel meshes, and plastics. The reported extremely water-repellent coatings consist of a PDMS basic binding layer, candle soot clusters (CSC), and an outside CS layer, which has exhibited long-lived superwettability and resistance against mechanical damage in multi-cycle abrasion tests and ultrasonication treatments over a long duration. The resulting mechanical durability was mainly a result of three-dimensional topography-protected and carbon nanoparticle-mixed structures, which decreased the contact area and created highly hydrophobic bulk coatings. Moreover, the durable performances of the three types of CS-based superhydrophobic coatings to resist mechanical damage, involving CS, PDMS-CS, and PDMS-CSC-CS coatings, were compared on a glass substrate, and the results indicated higher robustness of the present PDMS-CSC-CS coatings. In addition, it showed higher biocompatibility than a PDMS film surface, and can therefore be employed as a promising material for further modification for applications in prospective multifunctional biomedical devices.
  1. Ollivier H, J. Phys. Theor. Appl., 6, 757 (1907)
  2. Onda T, Shibuichi S, Satoh N, Tsujii K, Langmuir, 12(9), 2125 (1996)
  3. Shibuichi S, Onda T, Satoh N, Tsujii K, J. Phys. Chem., 100(50), 19512 (1996)
  4. Young T, Philos. Trans. R. Soc. Lond., 95, 65 (1805)
  5. Wenzel RN, Ind. Eng. Chem., 28, 988 (1936)
  6. Cassie ABD, Baxter S, Trans. Faraday Soc., 40, 546 (1944)
  7. Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng XC, Proc. Natl. Acad. Sci. U. S. A., 106, 8435 (2009)
  8. Su B, Tian Y, Jiang L, J. Am. Chem. Soc., 138(6), 1727 (2016)
  9. Lin X, Choi M, Heo J, Jeong H, Park S, Hong J, ACS Sustain. Chem. Eng., 5, 3448 (2017)
  10. Lin X, Yang M, Jeong H, Chang M, Hong J, J. Membr. Sci., 506, 22 (2016)
  11. Kang Z, Li W, J. Ind. Eng. Chem., 50, 50 (2017)
  12. Graeber G, Schutzius TM, Eghlidi H, Poulikakos D, Proc. Natl. Acad. Sci. U. S. A., 114, 11040 (2017)
  13. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T, Nature, 388(6641), 431 (1997)
  14. Pan S, Kota AK, Mabry JM, Tuteja A, J. Am. Chem. Soc., 135, 578 (2012)
  15. Zhang X, Wang L, Levanen E, RSC Adv., 3, 12003 (2013)
  16. Lin X, Heo J, Hong J, Chem. Eng. J., 348, 870 (2018)
  17. Wang J, Han F, Liang B, Geng G, J. Ind. Eng. Chem., 54, 174 (2017)
  18. Cao MY, Li K, Dong ZC, Yu CM, Yang S, Song C, Liu KS, Jiang L, Adv. Funct. Mater., 25(26), 4114 (2015)
  19. Su B, Zhang C, Chen SR, Zhang XY, Chen LF, Wu YC, Nie YW, Kan XN, Song YL, Jiang L, Adv. Mater., 26(16), 2501 (2014)
  20. Lin X, Hwangbo S, Jeong H, Cho YA, Ahn HW, Hong J, J. Ind. Eng. Chem., 36, 30 (2016)
  21. Vakarelski IU, Patankar NA, Marston JO, Chan DYC, Thoroddsen ST, Nature, 489(7415), 274 (2012)
  22. Khojasteh D, Kazerooni M, Salarian S, Kamali R, J. Ind. Eng. Chem., 42, 1 (2016)
  23. Huang Q, Lin L, Yang Y, Hu R, Vogler EA, Lin C, Biomaterials, 33, 8213 (2012)
  24. Efremov AN, Stanganello E, Welle A, Scholpp S, Levkin PA, Biomaterials, 34, 1757 (2013)
  25. Lin X, Heo J, Jeong H, Choi M, Chang M, Hong J, J. Mater. Chem. A, 4, 17970 (2016)
  26. Falde EJ, Freedman JD, Herrera VLM, Yohe ST, Colson YL, Grinstaff WW, J. Control. Release, 214, 23 (2015)
  27. Nokes JM, Liedert R, Kim MY, Siddiqui A, Chu M, Lee EK, Khine M, Adv. Healthc. Mater., 5, 593 (2016)
  28. De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio ML, et al., Nat. Photonics, 5, 682 (2011)
  29. Jokinen V, Kankuri E, Hoshian S, Franssila S, Ras RHA, Adv. Mater., 1705104 (2018).
  30. Falde EJ, Yohe ST, Colson YL, Grinstaff MW, Biomaterials, 104, 87 (2016)
  31. Lu Y, Sathasivam S, Song JL, Crick CR, Carmalt CJ, Parkin IP, Science, 347(6226), 1132 (2015)
  32. Tian XL, Verho T, Ras RHA, Science, 352(6282), 142 (2016)
  33. Milionis A, Loth E, Bayer IS, Adv. Colloid Interface Sci., 229, 57 (2016)
  34. Ellinas K, Tserepi A, Gogolides E, Adv. Colloid Interface Sci., 250, 132 (2017)
  35. Liu H, Ye T, Mao C, Angew. Chem.-Int. Edit., 119, 6593 (2007)
  36. Wei Z, Yan K, Chen H, Yi Y, Zhang T, Long X, Li J, Zhang L, Wang J, Yang S, Energy Environ. Sci., 7, 3326 (2014)
  37. Chang WY, Huang W, Kim J, Li S, Jiang X, Appl. Phys. Lett., 107, 161903 (2015)
  38. Deng X, Mammen L, Butt HJ, Vollmer D, Science, 335(6064), 67 (2012)
  39. Iqbal R, Majhy B, Sen AK, ACS Appl. Mater. Interfaces, 9, 31170 (2017)
  40. Liu XJ, Xu Y, Ben KY, Chen Z, Wang Y, Guan ZS, Appl. Surf. Sci., 339, 94 (2015)
  41. Liu X, Xu Y, Chen Z, Ben K, Guan Z, RSC Adv., 5, 1315 (2015)
  42. Qahtan TF, Gondal MA, Alade IO, Dastageer MA, Sci. Rep., 7, 7531 (2017)