Applied Chemistry for Engineering, Vol.30, No.3, 371-378, June, 2019
그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성
Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam
E-mail:,
초록
그래핀나노플레이트렛(GnP)이 목재기반 복합보드의 열적 및 난연 특성에 미치는 영향을 조사하기 위하여, 5, 10, 및 20 wt% 등 여러 가지 GnP 함량으로 GnP/재활용 페놀폼(re-PF)/목재 복합보드를 제조하였다. 제조된 복합보드의 열적 특성 및 난연성은 열중량분석(TGA) 및 한계산소지수(LOI) 시험을 통하여 각각 분석되었다. 복합보드의 열안정성은 GnP 첨가량에 따라 비례하게 증가하였고, 이 복합보드의 탄화수율(char yield)은 순수 목재보드 대비 최대 22%까지 증가하였다. 복합보드의 LOI 값은 순수 목재보드보다 약 4.8~7.8% 높았다. 또한, 재활용 페놀폼 및 GnP 첨가로 인하여 복합보드의 난연성이 크게 향상되었음을 확인하였다. 이는 열안정성이 높은 재활용 페놀폼과 GnP가 복합보드의 열분해 개시 온도를 지연시키고, 탄화층(char layer)을 보다 조밀하고 두껍게 형성하였기 때문에, 복합보드의 연소 지연효과를 이끌었다. 특히 탄소기반 재료로서 GnP는 탄화층의 형성을 용이하게 하고, 탄화수율을 현저히 증가시켜 재활용 페놀폼에 비하여 난연성에 높은 효과를 나타내었다.
Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.
- Jin E, Chung YJ, Fire Sci. Eng, 32, 19 (2018)
- Seo HJ, Kim NK, Jo JM, Lee MC, J. Korean Soc. Hazard Mitig., 17, 173 (2017)
- Seo HJ, Kim NK, Jo JM, Lee MC, J. Korean Soc. Hazard Mitig., 18, 185 (2018)
- Liu M, Wang Y, Wu Y, He Z, Wan H, J. Clean Prod., 187, 361 (2018)
- Tang Y, Wang DY, Jing XK, Ge XG, Yang B, Wang YZ, J. Appl. Polym. Sci., 108(2), 1216 (2008)
- Cui H, Du G, Wood Sci. Technol., 47, 105 (2013)
- Jin S, Li K, Li J, Chen H, Polymers, 9, 513 (2017)
- Park HJ, Fire Sci. Eng., 24, 122 (2010)
- Zhang L, Liang S, Chen Z, Constr. Build. Mater., 168, 1 (2018)
- Monji P, Jahanmardi R, Mehranpour M, Carbon Lett., 27, 81 (2018)
- Zuo L, Fan W, Zhang Y, Zhang L, Gao W, Huang Y, Liu T, Compos. Sci. Technol., 139, 57 (2017)
- Chun KO, Rie DH, J. Korean Soc. Saf., 32, 28 (2017)
- Huang G, Wang S, Song P, Wu C, Chen S, Wang X, Compos. Pt. A-Appl. Sci. Manuf., 59, 18 (2014)
- Seo HJ, Jo JM, Hwang W, Lee MC, J. Korean Soc. Combust., 22, 1 (2017)
- Kamae T, Drzal LT, Compos. Pt. A-Appl. Sci. Manuf., 43, 1569 (2012)
- Dittrich B, Wartig K, Hofmann D, Mulhaupt R, Schartel B, Polym. Degrad. Stabil., 98, 1495 (2013)
- Seo HJ, Kim SM, Son DW, Park SB, J. Korean Soc. Living Environ. Syst., 20, 514 (2013)
- Lee KM, Lee SE, Lee YS, Polymer, 40, 553 (2016)
- Papageorgiou DG, Terzopoulou Z, Fina A, Cuttica F, Papageorgiou GZ, Bikiaris DN, Chrissafis K, Young RJ, Kinloch IA, Compos. Sci. Technol., 156, 95 (2018)
- Idumah CI, Hassan A, Bourbigot S, J. Anal. Appl. Pyrolysis, 123, 65 (2017)
- Wang FZ, Drzal LT, Qin Y, Huang ZX, J. Mater. Sci., 50(3), 1082 (2015)
- Quan H, Zhang B, Zhao Q, Yuen RKK, Li RKY, Compos. Pt. A-Appl. Sci. Manuf., 40, 1506 (2009)
- Wu X, Wang L, Wu C, Yu J, Xie L, Wang G, Jiang P, Polym. Degrad. Stabil., 97, 54 (2012)
- Huang G, Gao J, Wang X, Liang H, Ge C, Mater. Lett., 66, 187 (2012)
- Hashim R, Sulaiman O, Kumar RN, Tamyez PF, Murphy RJ, Ali Z, J. Mater. Process. Technol., 209, 635 (2009)
- Yang HS, Kim DJ, Kim HJ, Bioresour. Technol., 86(2), 117 (2003)
- Park HJ, Kim H, Fire Sci. Eng., 18, 86 (2004)
- Wu Y, Yao C, Hu Y, Yang S, Qing Y, Wu Q, J. Ind. Eng. Chem., 20(5), 3536 (2014)
- Ye L, Wu Q, Qu B, Polym. Degrad. Stabil., 94, 751 (2009)
- Cavdar AD, Measurement, 50, 279 (2014)
- Wang X, Kalali EN, Wan JT, Wang DY, Prog. Polym. Sci, 69, 22 (2017)
- Shin BW, Song YH, Rie DH, Chung KS, Fire Sci. Eng., 24, 120 (2010)
- Yu MJ, Kwon TS, Bae YH, Vu MC, Lee BC, Kim SR, Polymer, 42, 133 (2018)
- Lee JC, Seo JS, Kim SB, J. Korean Inst. Gas, 17, 35 (2013)
- Ran S, Chen C, Guo Z, Fang Z, J. Appl. Polym. Sci., 131, 40520 (2014)
- Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois, Mater. Sci. Eng. R-Rep., 63, 100 (2009)
- Dasari A, Yu ZZ, Cai GP, Mai YW, Prog. Polym. Sci, 38, 1357 (2013)
- Dittrich B, Wartig K, Hofmann D, Mulhaupt R, Schartel B, Polym. Degrad. Stabil., 98, 1495 (2013)
- Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B, Polym. Adv. Technol., 24, 916 (2013)
- Kodur VKR, Harmathy TZ, The SFPE Handbook of Fire Protection Engineering, 3rd ed., Chapter 1-10, NFPA, MA, USA (2002).