Journal of Industrial and Engineering Chemistry, Vol.81, 427-439, January, 2020
Effective charge separation in rGO/NiWO4@Au photocatalyst for efficient CO2 reduction under visible light
E-mail:,
Catalyst performance can be improved by introducing an electron donor into both the valence band (VB) and conduction band (CB) to facilitate charge separation and suppress electron-hole recombination. Herein, Au nanoparticles served as CB electron donors in NiWO4 core particles which were evenly dispersed on a reduced graphene oxide (rGO) sheet that served as a VB electron donor. The resulting rGO/ NiWO4@Au photocatalyst was applied to reducing CO2. The particles exhibited broadband absorbance from the ultraviolet to near-infrared, with a specific Au surface plasmon resonance (SPR) absorption peak at 600 nm. Moreover, the catalyst exhibited low photoluminescence (PL) and a high photocurrent density, indicating that photo-excited electron-hole recombination was suppressed and the charges effectively separated. Photocatalytic reduction of CO2 on rGO/NiWO4@Au was significantly enhanced as evidenced by the total amounts of reduction products (CO and CH4), which were 15 times those for NiWO4 and six times those for rGO/NiWO4 and NiWO4@Au. The expected electron-transfer mechanism on rGO/ NiWO4@Au involves electron donation into the VB from the p-electron rich rGO, combined with photo- excited electrons from the NiWO4 and Au particles where electrons on the Au surfaces were amplified by the SPR and then moved to the CB of NiWO4. Intensity-modulated photovoltage spectroscopy of rGO/ NiWO4@Au indicated a significantly reduced electron-hole recombination rate.
- Ola O, Maroto-Valer MM, J. Photochem. Photobiol. C, 24, 16 (2015)
- Wang W, Soulis J, Yang YJ, Biswas P, Aerosol. Air Qual. Res., 14, 533 (2014)
- Ning X, Meng S, Fu X, Ye X, Chen S, Green Chem., 18, 3628 (2016)
- Chen J, Poon C, Build Environ., 44, 1899 (2009)
- Vinodgopal K, Wynkoop DE, Kamat PV, Environ. Sci. Technol., 30, 1660 (1996)
- Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X, Chem. Soc. Rev., 43, 5234 (2014)
- Zhou P, Yu JG, Jaroniec M, Adv. Mater., 26(29), 4920 (2014)
- He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD, J. Am. Chem. Soc., 122(38), 9071 (2000)
- Gondal MA, Chang XF, Sha WEI, Yamani ZH, Zhou Q, J. Colloid Interface Sci., 392, 325 (2013)
- Wang H, Tam F, Grady NK, Halas NJ, J. Phys. Chem. B, 109(39), 18218 (2005)
- Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y, ACS Nano., 4, 6425 (2010)
- Sest E, Drazic G, Genorio B, Jerman I, Sol. Energy Mater. Sol. Cells, 176, 19 (2018)
- Yu SH, Zhao L, Liu RC, Zhang CM, Zheng HR, Sun YT, Li LX, Sol. Energy Mater. Sol. Cells, 183, 66 (2018)
- Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S, Carbon, 47, 3280 (2009)
- Tian J, Leng Y, Zhao Z, Xia Y, Sang Y, Hao P, Zhan J, Li M, Liu H, Nano Energy, 11, 419 (2015)
- Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho W, ACS Appl. Mater. Interf., 5, 11392 (2013)
- Zhu J, Li W, Li Y, Li J, Hu H, Yang Y, Electrochim. Acta., 112, 191 (2013)
- Li P, Umezawa N, Abe H, Ye J, J. Mater. Chem. A, 3, 10720 (2015)
- Huang H, He Y, Lin Z, Kang L, Zhang Y, J. Phys. Chem. C, 117, 22986 (2013)
- Amano F, Nogami K, Abe R, Ohtani B, J. Phys. Chem. C, 112, 9320 (2008)
- Di TM, Zhu BC, Zhang J, Cheng B, Yu JG, Appl. Surf. Sci., 389, 775 (2016)
- Kumar R, Bhuvana T, Sharma A, RSC Adv., 7, 42146 (2017)
- Kwak BS, Kim KM, Park SM, Kang M, Appl. Surf. Sci., 407, 109 (2017)
- Mancheva MN, Iordanova RS, Klissurski DG, Tyuliev GT, Kunev BN, J. Phys. Chem. C, 111, 1101 (2007)
- Sarma TK, Chowdhury D, Paul A, Chattopadhyay A, Chem. Commun., 1, 148 (2002)
- Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS, Carbon, 49, 3019 (2011)
- Wang A, Yu W, Huang Z, Zhou F, Song J, Song Y, Long L, Cifuentes MP, Humphrey MG, Zhang L, Shao J, Zhang C, Sci. Rep., 6, 23325 (2016)
- Anspoks A, Kalinko A, Timoshenko J, Kuzmin A, Solid State Commun., 183, 22 (2014)
- Qiu C, Zhou H, Cao B, Sun L, Yu T, Carbon, 59, 487 (2013)
- Yu P, Zhao X, Huang Z, Li Y, Zhang Q, J. Mater. Chem. A, 2, 14413 (2014)
- Shin J, Do JY, Kim R, Son N, Park N, Ryu H, Seo MW, Chi J, Youn Y, Kang M, Catalyst, 9, 467 (2019)
- El-Hout SI, Chen CL, Liang T, Yang LF, Zhang J, Mater. Chem. Phys., 198, 99 (2017)
- Chen S, Yang G, Jia Y, Zheng H, J. Mater. Chem. A, 5, 1028 (2017)
- Mohamed MM, Ahmed SA, Khairou KS, Appl. Catal. B: Environ., 150-151, 63 (2014)
- Han SW, Kim Y, Kim K, J. Colloid Interface Sci., 208(1), 272 (1998)
- McCaldin JO, McGill TC, Mead CA, Phys. Rev. Lett., 36, 56 (1976)
- Lyon LA, Musick MD, Smith PC, Reiss BD, Pena DJ, Natan MJ, Sens. Actuators B-Chem., 54, 118 (1999)
- Li K, Peng TY, Ying ZH, Song SS, Zhang J, Appl. Catal. B: Environ., 180, 130 (2016)
- Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK, Angew. Chem.-Int. Edit., 52, 7372 (2013)
- Ji Y, Luo Y, ACS Catal., 6, 2018 (2016)
- Peterson AA, Nørskov JK, J. Phys. Chem. Lett., 3, 251 (2012)
- Xu X, Pei L, Yang Y, Shen J, Ye M, J. Alloy. Compd., 654, 23 (2016)
- Kumar RD, Andou Y, Karuppuchamy S, J. Alloy. Compd., 654, 349 (2016)
- Ogawara Y, Bruneau A, Kimura T, Anal. Chem., 66, 4354 (1994)
- Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z, Adv. Sci., 5, 1 (2018)
- de Oliveira ALM, Ferreira JM, Silva MRS, de Souza SC, Vieira FTG, Longo E, Souza AG, Santos IMG, J. Thermal Anal. Calorim., 97, 167 (2009)
- Pandey PK, Bhave NS, Kharat RB, Electrochim. Acta, 51(22), 4659 (2006)
- Quesada J, Arreola-Sanchez R, Faba L, Diaz E, Renteria-Tapia VM, Ordonez S, Appl. Catal. A: Gen., 551, 23 (2018)
- Kaftelen H, Ocakoglu K, Thomann R, Tu S, Weber S, Erdem E, Phys. Rev. B, 86, 1 (2012)
- Kong W, Rahimi-Iman A, Bi G, Dai X, Wu H, J. Phys. Chem. C, 120, 7606 (2016)
- Waita SM, Aduda BO, Mwabora JM, Granqvist CG, Lindquist SE, Niklasson GA, Hafeldt A, Boschloo G, J. Electroanal. Chem., 605(2), 151 (2007)
- Tractz G, Viomar A, Dias B, de Lima C, Banczek E, da Cunha M, Antunes S, Rodrigues P, J. Braz. Chem. Soc., 30, 371 (2019)