- Previous Article
- Next Article
- Table of Contents
Clean Technology, Vol.25, No.4, 331-335, December, 2019
요소를 이용한 수열합성의 합성시간에 따른 Hexaaluminate 제조의 영향
Effects of Hexaaluminate Manufacturing on the Synthetic Time of Hydrothermal Synthesis Using Urea
E-mail:
초록
전 세계적으로 환경오염에 대한 관심이 높아지고 있으며, 이를 해결하기 위한 기술개발 또한 활발하게 이루어지고 있다. 특히 열을 사용하는 분야에서는 연소로 인해 대기환경 오염물질이 많이 발생하고 있는 상황이다. 연소 촉매는 완전 연소와 연소온도를 낮춰 NOx와 CO를 줄이는 기술이다. 기존 연소 촉매는 귀금속 촉매를 사용하여 값이 비싸고 합성공정이 복잡하다. 본 연구는 요소를 이용하여 고온 연소촉매인 헥사알루미네이트를 제조하였으며, 합성시간에 따른 물성을 조사하였다. 그리고 이 촉매를 이용하여 연소 성능 및 특성을 평가하였다. 온도가 증가하면서 변화하는 메탄 전환율은 두 가지 패턴으로 나타났다. 1 h, 9 h, 12 h의 전환율이 비슷하게 나타났고, 3 h, 6 h의 전환율이 유사한 패턴을 나타내었다. 합성시간이 6 h에서 9 h으로 증가하면서 메탄 연소 성능이 급격하게 증가하였으며, T50이 되는 온도는 약 745 ℃로 나타났다. 9 h 합성된 연소촉매의 성능이 가장 우수하게 나타났으며, 이 연소촉매의 NOx 배출은 없었고, CO의 최대 배출량은 72 ppm으로 나타났다.
Interest in environmental pollution is increasing all over the world, and technology development to solve it is actively carried out. In areas where heat is used, especially, combustion is causing countless pollutants in the air environment. Combustion catalyst is a technology that reduces NOx and CO by lowering combustion temperature and enabling complete combustion. Traditional combustion catalysts are expensive and complex in the synthesis process using precious metal catalyst. In this study, hexaaluminate, a high-temperature combustion catalyst, was manufactured using urea, and the properties were investigated according to the synthesis time. The combustion performance and characteristics were evaluated using this catalyst. As the
temperature increased, the changing methane conversion rate was shown in two patterns. The conversion rates for 1 hour, 9 hours, and 12 hours were similar, while the conversion rates for 3 hours and 6 hours showed similar patterns. Methane combustion performance increased rapidly as the synthesis time increased from 6 hours to 9 hours, whereas the temperature at T50 was
approximately 745 ℃. The performance of the synthesized combustion catalyst for 9 hours was optimum as the NOx emission of this combustion catalyst was not present and the maximum emission of CO was 72 ppm.
- Prefferle LD, Prefferle WC, Catal. Rev. Sci. Eng., 29(2&3), 219 (1987)
- Arai H, Yamada T, Eguchi K, Appl. Catal., 26, 265 (1986)
- McCarty JG, Wise H, Catal. Today, 8, 231 (1990)
- Machida M, Eughi K, Arai H, J. Catal., 103, 385 (1987)
- Beguin B, Garbowski E, Primet M, Appl. Catal., 75(1), 119 (1991)
- Machida M, Eguchi K, Arai H, J. Catal., 123(2), 477 (1990)
- Beguin B, Garbowski E, Primet M, J. Catal., 127(2), 595 (1991)
- Groppi G, Bellotto M, Cristiam C, Forzatti P, Villa PL, Appl. Catal. A: Gen., 104, 101 (1993)
- Mao CF, Vannice MA, Appl. Catal. A: Gen., 111(2), 151 (1994)
- Romero A, Jobbagy M, Laborde M, Baronetti G, Amadeo N, Appl. Catal. A: Gen., 470, 398 (2014)
- Seo YS, Jung YS, Yoon WL, Jang IG, Lee TW, Int. J. Hydrog. Energy, 36(1), 94 (2011)
- Roh HS, Jung Y, Koo KY, Jung UH, Seo YS, Yoon WL, Appl. Catal. A: Gen., 383(1-2), 156 (2010)
- Cheng H, Yue B, Wang X, Lu X, Ding W, J. Nat. Gas. Chem., 18(2), 225 (2009)
- Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K, Appl. Catal. A: Gen., 263(2), 249 (2004)
- Maeda K, Mizukami F, Watanabe M, Arai N, Toba M, Shimizu K, J. Mater. Sci. Lett., 9(5), 522 (1990)
- Serantoni M, Costa AL, Zanelli C, Esposito L, Ceram. Int., 40(8), 11837 (2014)
- Bernhard AM, Peitz D, Elsener M, Wokaun A, Krocher O, Appl. Catal. B: Environ., 115, 129 (2012)
- Bell TE, Gonzalez-Carballo JM, Tooze RP, Torrente-Murciano L, RSC. Adv., 7, 22369 (2017)
- Chen B, Wang JX, Wang D, Zeng XF, Clarke SM, Chen JF, J. Nanotechnol, 29(305605), 1 (2018)
- Mishra D, Anand S, Panda RK, Das RP, Mater. Lett., 56(6), 873 (2002)
- Mishra D, Anand S, Panda RK, Das RP, Mater. Chem. Phys., 86(1), 132 (2004)
- Mohapatra M, Pattanaik DM, Anand S, Das RP, Ceram. Int., 33(4), 531 (2007)
- Yin FX, Ji SF, Wu PY, Zhao F, Li CY, J. Mol. Catal. A-Chem., 294(1-2), 27 (2008)
- Park JY, Jung YS, Rhee YW, Korean Chem. Eng. Res., 56(3), 349 (2018)