화학공학소재연구정보센터
Clean Technology, Vol.26, No.3, 221-227, September, 2020
Kaolinite 계열의 첨가제와 알칼리염의 반응 특성
Reaction Characteristics of Kaolinite-based Additives and Alkali Salts
E-mail:,
초록
폐기물고형연료(SRF, Bio-SRF)가 보일러에서 연소 될 때, 연료에 다량 함유되어있는 알칼리 성분(Na, K) 들이 연소과정에서 문제를 발생시킨다. 알칼리 성분은 낮은 melting point를 가지고 있어 통상 연소로 온도 내에서 저융점 염을 형성하고, 생성된 저융점 염들은 전열관에 달라붙어 클링커를 형성한다. 클링커생성을 억제하기 위해 다양한 첨가제가 사용되고 있으며, 고령석 기반의 첨가제는 알칼리-알루미늄-실리카가 형성되어 클링커를 억제한다. 본 연구에서는 고령석을 기반으로 하는 첨가제의 반응성을 비교 하였다. 사용된 첨가제는 R-kaolinite, B-kaolinite, A-kaolinite를 사용하였고 비교군 으로 silica와 MgO를 사용하였다. 실험은 실험실 규모의 회분식 수평형 반응기를 사용하였다. 첨가제와 알칼리염은 중량비 1 : 1로 반응토록 하였으며 반응 온도는 900 ℃에서 10시간 수행하였다. 실험 중 발생한 HCl은 검지관을 사용하여 30분 후 첫 측정을 하고 이후 1시간 마다 반복하여 측정하였다. 반응 후 고체 잔여물은 특성 분석을 위하여 광학현미경으로 촬영하였다. 분석결과를 토대로 고령석의 반응특성을 확인하였다.
When the waste solid fuel (SRF, Bio-SRF) is burnt in a boiler, a problem occurs in the combustion process involving the alkali components (Na, K) contained in large amounts in the fuel. The alkaline component has a low melting point, which usually forms low melting point salt in the temperature of the furnace, with the resulting low melting point salts attaching to the heat pipe to form a clinker. Various additives are used to suppress clinker generation, and the additive based on the kaolinite has alkali-aluminum-silica to inhibit the clinker. In this study, the reactivity of the additives based on the kaolinite was compared. The additives utilized were R-kaolinite, B-kaolinite, and A-kaolinite. Also silica and MgO were sourced as the comparison group. The experimental group was employed as a laboratory-scale batch horizontal reactor. The additive and alkaline salts were reacted at a weight ratio of 1 : 1, and the reaction temperature was performed at 900 ℃ for 10 hours. The first measurement of HCl occurring during the experiment was performed 30 minutes after the detection tube was used, and the process was repeated every hour after the experiment. After the reaction, solid residues were photographed for characterization analysis by means of an optical microscope. The reaction characteristics of the kaolinite were confirmed based on the analysis results.
  1. Rhu JK, Korea Legislative Studies Institute, 16(1), pp. 153-164 (2010).
  2. “World Energy Outlook 2018,” IEA, p. 38 (2018).
  3. Lee CY, Jeong BH, Chung JD, J. Korea Soc., Waste Manag., 35(8), 754 (2018)
  4. Khan AA, de Jong W, Jansens PJ, Spliethoff H, Fuel Process. Technol., 90(1), 21 (2009)
  5. Park JH, Lee DH, Han KH, Shin JS, Bae DH, Shim TE, Lee JH, Shun D, Fuel, 236, 792 (2019)
  6. Michelsen HP, Frandsen F, Dam-Johansen K, Larsen OH, Fuel Process. Technol., 54(1-3), 95 (1998)
  7. Kim BJ, Ryu CK, Lee UD, Kim YD, Lee JW, Song JH, Clean Technol., 23(3), 223 (2017)
  8. Qinyan Y, Ying S, Baoyu G, Colloids Surf. B: Biointerfaces, 72(2), 241 (2009)
  9. Kim SG, Song TW, J. Korean Ceram. Soc., 49(6), 601 (2012)
  10. Xu LL, Liu J, Kang Y, Miao YQ, Ren W, Wang TT, Energy Fuels, 28(9), 5640 (2014)
  11. Boman C, Bostrom D, Ohman M, 16th European Biomass Conference & Exhibition, 2-6, Valencia, Spain, (2008).
  12. Bostrom D, Grimm A, Lindstrom E, Boman C, Bjombom E, Ohman M, 16th European Biomass Conference & Exhibition, 2-6, Valencia, Spain, (2008).
  13. Tran KQ, Iisa K, Hagstrom M, Steenari BM, Lindqvist O, Pettersson JBC, Fuel, 83(7-8), 807 (2004)
  14. Steenari BM, Lundberg A, Pettersson H, Wilewska-Bien M, Andersson D, Energy Fuels, 23(11), 5655 (2009)
  15. Kyi S, Chadwick BL, Fuel, 78(7), 845 (1999)
  16. Purbasari A, Samadhi TW, Bindar Y, Int. J. Renew. Energy Dev., 5(2), 95 (2016)