화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.94, 384-389, February, 2021
Effect of ionic conductivity in polymer-gel electrolytes containing iodine-based redox mediators for efficient, flexible energy storage systems
E-mail:,
Tailoring redox-mediators (RMs) and developing systematic fabrication methods for favorable electrochemical kinetics are essential to improve the energy storage performance of fiber-based supercapacitors. The effective use of RMs can provide a unique energy storage mechanism; additional Faradaic redox reactions and optimized ion diffusion between the electrodes and electrolyte can be achieved. Here, we successfully optimized the electrochemical performance of fiber-based supercapacitors using the iodine-based redox mediator (I-RM) potassium iodide (KI). The fiber-based symmetrically yarned supercapacitor cells (f-SYCs), incorporating the KI mediator at a concentration of 7.5 mM, exhibit a high specific capacitance of 13.9 mF at a current density of 10 μA, which directly depicts its superior electrochemical performance compared to that of the previously reported fiber-based supercapacitors. Owing to the limited moisture content present in the polymer-gel electrolyte, the improved electrochemical performance of the f-SYCs containing I-RMs is attributed to the optimized ionic conductivity and diffusion kinetics, as a result of the well-engineered KI electrolyte properties. Synergistically, the results indicate that controlling the amount of RMs in the polymer-gel electrolyte is crucial to achieve excellent overall electrochemical properties in next-generation fiber-based supercapacitors.
  1. Chauhan NPS, Mozafari M, Chundawat NS, Meghwal K, Ameta R, Ameta SC, J. Ind. Eng. Chem., 36, 13 (2016)
  2. Chauhan NPS, Mozafari M, Chundawat NS, Meghwal K, Ameta R, Ameta SC, J. Ind. Eng. Chem., 36, 13 (2016)
  3. Chauhan NPS, Mozafari M, Chundawat NS, Meghwal K, Ameta R, Ameta SC, J. Ind. Eng. Chem., 36, 13 (2016)
  4. Simon P, Gogotsi Y, Nat. Mater., 7, 845 (2008)
  5. Lee SW, Kim BS, Hong J, Choi H, Jang HS, Hou B, Pak S, Lee J, Lee SH, et al., Nano Energy, 37, 15 (2017)
  6. Hong J, Lee YW, Ahn D, Pak S, Lee J, Jang AR, Lee S, Hou B, Cho Y, Morris SM, Shin HS, Cha SN, Sohn JI, Kim JM, Nano Energy, 39, 337 (2017)
  7. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D, J. Mater. Chem. A, 5, 12653 (2017)
  8. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  9. Kim WJ, Ko TH, Seo MK, Chung YS, Kim HY, Kim BS, J. Ind. Eng. Chem., 59, 277 (2018)
  10. Song ES, Shin JB, Lee SH, Kim SK, J. Ind. Eng. Chem., 87, 173 (2020)
  11. Lee HU, Jin JH, Kim SW, J. Ind. Eng. Chem., 71, 184 (2019)
  12. Hu L, Zhai T, Li H, Wang Y, ChemSusChem, 12, 1118 (2019)
  13. Hatzell KB, Beidaghi M, Campos JW, Dennison CR, Kumbur EC, Gogotsi Y, Electrochim. Acta, 111, 888 (2013)
  14. Yoon H, Kim HJ, Yoo JJ, Yoo CY, Park JH, Lee YA, Cho WK, Han YK, Kim DH, J. Mater. Chem. A, 3, 23323 (2015)
  15. Hu L, Shi C, Guo K, Zhai T, Li H, Wang Y, Angew. Chem.-Int. Edit., 130, 8346 (2018)
  16. Park Y, Choi H, Lee DG, Kim MC, Tran NAT, Cho Y, Lee YW, Sohn JI, ACS Sustain. Chem. Eng., 8, 2409 (2020)
  17. Roldan S, Granda M, Menendez R, Santamaria R, Blanco C, J. Phys. Chem. C., 115, 17606 (2011)
  18. Chen L, Chen Y, Wu J, Wang J, Bai H, Li L, J. Mater. Chem. A, 2, 10526 (2014)
  19. Jinisha B, Anilkumar KM, Manoj M, Ashraf CM, Pradeep VS, Jayalekshmi S, J. Solid State Electrochem., 23, 3343 (2019)
  20. Yu HJ, Wu JH, Fan LQ, Lin YZ, Xu KQ, Tang ZY, Cheng CX, Tang S, Lin JM, Huang ML, Lan Z, J. Power Sources, 198, 402 (2012)