화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 156-169, March, 2021
Effect of surface acidity-basicity balance in modified ZnxZryOz catalyst on its performance in the conversion of hydrous ethanol to hydrocarbons
E-mail:
ZnxZryOz and modified MuZnxZryOz (M = Si, W, Sc, Mg)/ Zn/(W-Zr) catalysts were studied in conversion of hydrous (4 wt% H2O) ethanol at P =15 bar, T = 450 °C and WHSV = 0.8-7.9 h-1. The basicity of the catalysts changed from 0.015 to 0.66 mmol/g and the acidity from 0.07 to 0.24 mmol/g resulting in a wide range of basicity/acidity ratio (R) of 1.3 to 7.3. Measurements of the catalysts activity, selectivity and stability indicate a strong dependency on the R-value. The yield of organic liquid C5-C11 increased from 17 wt% to 59 wt% while the yield of light olefins C2-C4 decreased from 60 wt% to 14 wt%, as R increased from 1.3 to 7.3. The content of C5-C11 iso-olefins and aromatics in organic liquid on ZnxZryOz (R = 3.9), WuZnxZryOz (R = 2.0) and MguZnxZryOz (R = 7.3) increased significantly with the residence time. ZnxZryOz was stable up to 360 h on stream, while the activity and selectivity of MguZnxZryOz and WuZnxZryOz altered after 90 h on stream due to coke deposition blocking the acid and basic sites. It was proposed a comprehensive scheme of ethanol transformations routes consistent with the measured effects of the residence time, catalysts R-value and time on stream on the products distribution.
  1. Global ethanol production by feedstock from 2007-2019, (2019).
  2. Dugkhuntod P, Wattanakit C, Catalysts, 10, 245 (2020)
  3. Sun J, Wang Y, ACS Catal., 4, 1078 (2014)
  4. Bronsato BJDA, Zonetti PC, Moreira CR, Mendoza CD, Maia da Costa MEH, Alves OC, de Avillez RR, Appel LG, Catalysis Today (2020).
  5. Rorrer JE, Toste FD, Bell AT, ACS Catalysis, 9, 10588 (2019)
  6. Sun JM, Zhu KK, Gao F, Wang CM, Liu J, Peden CHF, Wang Y, J. Am. Chem. Soc., 133(29), 11096 (2011)
  7. Dagle RA, Winkelman AD, Ramasamy KK, Dagle VL, Weber RS, Ind. Eng. Chem. Res., 59(11), 4843 (2020)
  8. Pomalaza G, Ponton PA, Capron M, Dumeignil F, Catalysis Science & Technology, 10 4860-4911.
  9. Dai J, Zhang H, Science China Materials, 62, 1642 (2019)
  10. Wu X, Fang G, Tong Y, Jiang D, Liang Z, Leng W, Liu L, Tu P, Wang H, Ni J, Li X, ChemSusChem, 11, 71 (2018)
  11. Eagan NM, Kumbhalkar MD, Buchanan JS, Dumesic JA, Huber GW, Nature Revs. Chemistry, 3, 223 (2019)
  12. Galadima A, Muraza O, J. Ind. Eng. Chem., 31, 1 (2015)
  13. Ramasamy KK, Gray M, Job H, Smith C, Wang Y, Catal. Today, 269, 82 (2016)
  14. Marcu IC, Tichit D, Fajula F, Tanchoux N, Catal. Today, 147, 231 (2009)
  15. Lovon-Quintana JJ, Rodriguez-Guerrero JK, Valenca PG, Appl. Catal. A: Gen., 542, 136 (2017)
  16. Dahan HO, Porgador B, Landau MV, Herskowitz M, Fuel Process. Technol., 198, 106246 (2020)
  17. Eagan NM, Kumbhalkar MD, Buchanan JS, Dumesic JA, Huber GW, Nature Revs. Chemistry, 3, 223 (2019)
  18. Tsuchida T, Yoshioka T, Sakuma S, Takeguchi T, Ueda W, Ind. Eng. Chem. Res., 47(5), 1443 (2008)
  19. Sun J, Liu C, Wang Y, Martin K, Venkitasubramanian P, SAmith C, US 2018/0138094A1, (2018).
  20. Sun J, Liu C, Wang Y, Martin K, Venkitasubramanian P, US 9586194B2, (2017).
  21. Yoshioka T, Tsuchida T, Kubo J, Sakuma S, US 9056811B2, (2015).
  22. Guillon E, Cadran N, Touchais N, Bournay L, US 9475999 B2, (2016).
  23. Smith JO, McGuire N, Starkey PE, Manzer LE, Sjodin M, Salazar C, PCT Int. Appl., WO 2016061262A1 (2016).
  24. Hanspal S, Young ZD, Prillaman JT, Davis RJ, J. Catal., 352, 182 (2017)
  25. Zhu HD, Chaudhari RV, Subramaniam B, Ramanathan A, Wu JF, AIChE J., 63(7), 2888 (2017)
  26. Choi WC, Kim JS, Lee TH, Woo SI, Catal. Today, 63(2-4), 229 (2000)
  27. Ji YJ, Yang HH, Yan W, Fuel, 243, 155 (2019)
  28. Diez V, Apesteguia CR, Di Cosimo JI, Latin American Appl. Res, 33, 79 (2003)
  29. Baylon RAL, Sun JM, Koyarik L, Engelhard M, Li HQ, Winkelman AD, Wang Y, Appl. Catal. B: Environ., 234, 337 (2018)
  30. Liu CJ, Sun JM, Smith C, Wang Y, Appl. Catal. A: Gen., 467, 91 (2013)
  31. Urbano FJ, Aramendia MA, Marinas A, Marinas JM, J. Catal., 268(1), 79 (2009)
  32. Aramendia MA, Borau V, Jimenez C, Marinas A, Marinas JM, Ruiz JR, Urbano FJ, J. Mol. Catal. A-Chem., 218(1), 81 (2004)
  33. Zhou W, Soultanidis N, Xu H, Wong MS, Neurock M, Kiely CJ, Wachs IE, ACS Catalysis, 7, 2181 (2017)
  34. Rosenholm JB, Adv. Colloid Interface Sci., 247, 264 (2017)
  35. Pyen S, Hong E, Shin M, Suh YW, Shin CH, Mol. Catal., 448, 71 (2018)
  36. Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Shen WJ, Imamura S, Appl. Catal. A: Gen., 279(1-2), 273 (2005)
  37. Kozlowski JT, Davis RJ, ACS Catal, 3, 1588 (2013)
  38. Fang Z, Wang J, Dixon DA, J. Phys. Chem. C, 119, 23413 (2015)
  39. Sanz JF, Oviedo J, Marquez A, Odrizola JA, Montes M, Angew. Chem.-Int. Edit., 38, 506 (1999)
  40. Wang S, Iglesia E, J. Phys. Chem. C, 120, 21589 (2016)
  41. Murthy R, Sreerama PP, Sidheswaran P, Jayamani M, J. Catal., 109, 298 (1988)
  42. Hindermann JP, Kieffer R, Bernier JC, Deluzarche A, J. Chem. Res., Synopses, 11 373, (1980).
  43. Christiansen MA, Mpourmpakis G, Vlachos DG, ACS Catalysis, 3, 1965 (2013)
  44. Mase N, et al., The aldol reaction: organocatalysis approach, comprehensive organic synthesis, Amsterdam. Neth, pp.273 2014.
  45. Mizuno S, Kurosawa M, Tanaka M, Iwamoto M, Chem. Lett., 41(9), 892 (2012)
  46. Iwamoto M, Catal. Today, 242, 243 (2015)
  47. Li X, Kant A, He YX, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA, Catal. Today, 276, 62 (2016)
  48. Song J, Huang ZF, Pan L, Zou JJ, Zhang X, Wang L, ACS Catal, 5, 6594 (2015)
  49. Song J, Zhang YC, Huang ZF, Pan L, Zhang X, Wang L, Zou JJ, J. Phys. Chem. C, 122, 23053 (2018)
  50. Zhang W, Zhang Y, Zhao L, Wei W, Energy Fuels, 24, 2052 (2010)
  51. Bing W, Wey M, J. Solid. State Chem., 269, 184 (2019)
  52. Theodorou V, Skobridis K, Tzakos AG, Ragoussis V, Tetrahedron Lett., 48, 8230 (2007)
  53. Cordes EH, Bull HG, Chem. Rev., 74, 581 (1974)
  54. Huang XM, Ma M, Miao S, Zheng YP, Chen MS, Shen WJ, Appl. Catal. A: Gen., 531, 79 (2017)
  55. Claus P, Berndt T, Chemie-Ingenieur-Technik, 68, 826 (1996)
  56. Inui K, Kurabayashi T, Sato S, J. Catal., 212(2), 207 (2002)
  57. Iwasa N, Takezawa N, Bull. Chem. Soc. Jpn., 64, 2619 (1991)
  58. Faba L, Diaz E, Ordonez S, Chem Sus Chem, 6, 463 (2013)
  59. Fung J, Wang I, J. Catal., 130, 577 (1991)
  60. Fung J, Wang I, J. Catal., 164(1), 166 (1996)
  61. Li KT, Wang I, Wu JC, Catal. Surv. Asia, 16, 240 (2012)
  62. Hemo E, Virduk R, Landau MV, Herskowitz M, Chem. Eng. Transactions., 21, 1243 (2010)