Journal of Industrial and Engineering Chemistry, Vol.95, 312-324, March, 2021
Fine particle flow pattern and region delimitation in fountain confined conical spouted beds
E-mail:
A novel borescopic technique together with the monitoring of pressure fluctuation signals (power
spectral distribution, PSD) has been used to track fine particles and characterize solid
flow dynamics in fountain confined conical spouted beds. Radial and axial particle velocity profiles have been obtained for different configurations, and spout-annulus and fountain core-periphery interfaces have been delineated. The downward particle velocities in the annulus peak at intermediate positions in this zone, whereas the upward velocities in the dilute zones (spout and fountain core) peak at the axis or close to this position. Among the different configurations analysed in this work, the system without draft tube shows the greatest vertical particle velocities in almost all the different radial and axial positions. The evolution of the spout size along the bed depends on the configuration used, but all of them differ from those commonly reported in the literature. Thus, the spout expands from the bed bottom to the surface, without any neck at an intermediate bed level. Furthermore, the cross-sectional spout shape has been delineated in the systems with open-sided draft tube, and significant spout expansion is observed due to air percolation from the spout into the annulus through the opened faces. Finally, the average spout diameters of the systems without draft tube and with open-sided draft tubes have been compared with those predicted by literature correlations. Those proposed by San Jose et al. and Volpicelli et al. provide the best fit for the configurations without draft tube and with open-sided draft tube, with their relative errors being 9.83% and 8.88%, respectively.
Keywords:Fine particles;Conical spouted bed;Fountain confiner;Particle image velocimetry;Particle velocity;Spout shape
- Mathur KB, Gishler PE, J. Appl. Chem., 5(11), 624 (1955)
- Saldarriaga JF, Atxutegi A, Aguado R, Altzibar H, Bilbao J, Olazar M, Chem. Eng. Res. Des., 102, 80 (2015)
- Chen X, Ren B, Chen Y, Zhong WQ, Chen DL, Lu Y, Jin BS, Can. J. Chem. Eng., 91(11), 1762 (2013)
- Sousa RC, Ferreira MC, Altzibar H, Freire FB, Freire JT, Particuology, 42, 176 (2019)
- Liu GQ, Li SQ, Zhao XL, Yao Q, Chem. Eng. Sci., 63(4), 1131 (2008)
- Dogan OM, Freitas LAP, Lim CJ, Grace JR, Luo B, Hudrodynamics and Stability of Slot-Rectangular Spouted Beds. Part I: Thin Bed, pp.37 (2000).
- San Jose MJ, Olazar M, Aguayo AT, Arandes JM, Bilbao J, Chem. Eng. J., 51(1), 45 (1993)
- Brito RC, Zacharias MB, Forti VA, Freire JT, Dry. Technol. (2020).
- Alvarez J, Hooshdaran B, Cortazar M, Amutio M, Lopez G, Freire FB, Haghshenasfard M, Hosseini SH, Olazar M, Fuel, 224, 111 (2018)
- Pozitano M, Dos Santos Rocha SC, Chem. Eng. Trans., 24, 667 (2011)
- San Jose MJ, Alvarez S, Lopez R, Catal. Today, 305, 13 (2018)
- Lopez G, Alvarez J, Amutio M, Arregi A, Bilbao J, Olazar M, Energy, 107, 493 (2016)
- Mathur KB, Epstein N, Spouted Beds, Academic Edition, Academic Press Incorporated, U.S., New York, 1974.
- Olazar M, San Jose MJ, Aguayo AT, Arandes JM, Bilbao J, Ind. Eng. Chem. Res., 31(7), 1784 (1992)
- Tellabide M, Estiati I, Pablos A, Altzibar H, Aguado R, Olazar M, Chem. Eng. Sci., 211 (2020)
- Al-Juwaya T, Ali N, Al-Dahhan M, Exp. Therm. Fluid Sci., 86, 37 (2017)
- Al-Juwaya T, Ali N, Al-Dahhan M, Chem. Eng. Res. Des., 148, 21 (2019)
- Ali N, Al-Juwaya T, Al-Dahhan M, J. Math. Psychol., 59, 129 (2016)
- Godfroy L, Larachi F, Kennedy G, Grandjean B, Chaouki J, Appl. Radiat. Isot., 48(2), 225 (1997)
- Kawaguchi T, Adv. Powder Technol., 21(3), 235 (2010)
- Park HC, Choi HS, Particuology, 42, 15 (2019)
- Roy D, Larachi F, Legros R, Chaouki J, Can. J. Chem. Eng., 72(6), 945 (1994)
- Spreutels L, Haut B, Legros R, Bertrand F, Chaouki J, AIChE J., 62(1), 26 (2015)
- Patterson EE, Halow J, Daw S, Ind. Eng. Chem. Res., 49(11), 5037 (2010)
- Mohs G, Gryczka O, Heinrich S, Morl L, Chem. Eng. Sci., 64(23), 4811 (2009)
- Aradhya S, Taofeeq H, Al-Dahhan M, Chem. Eng. Process., 110, 146 (2016)
- Barrozo MAS, Duarte CR, Epstein N, Grace JR, Lim CJ, Ind. Eng. Chem. Res., 49(11), 5102 (2010)
- He YL, Qin SZ, Lim CJ, Grace JR, Can. J. Chem. Eng., 72(4), 561 (1994)
- Kulah G, Sari S, Koksal M, Ind. Eng. Chem. Res., 55(11), 3131 (2016)
- San Jose MJ, Alvarez S, de Salazar AO, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 44(22), 8393 (2005)
- Yang JS, Breault RW, Weber JM, Rowan SL, Powder Technol., 334, 151 (2018)
- Yang J, Breault RW, Rowan SL, Chem. Eng. J., 380, 122467 (2020)
- Wu F, Yu ZY, Shang LY, Ma XX, Zhou WJ, Adv. Powder Technol., 30(10), 2178 (2019)
- Kiani M, Rahimi MR, Hosseini SH, Ahmadi G, Particuology, 32, 132 (2017)
- Wu SW, Lim CJ, Epstein N, Chem. Eng. Commun., 62(1-6), 251 (1987)
- Abdelrazek ID, Analysis of Thermo-Chemical Deposition in Spouted Beds, Ph. D. Thesis, University of Tennessee, Knoxville, TN, 1969.
- Pablos A, Aguado R, Tellabide M, Altzibar H, Freire FB, Bilbao J, Olazar M, Powder Technol., 328, 38 (2018)
- Pablos A, Aguado R, Vicente J, Tellabide M, Bilbao J, Olazar M, Particuology (2019).
- Atxutegi A, Tellabide M, Lopez G, Aguado R, Bilbao J, Olazar M, Chem. Eng. J., 374, 39 (2019)
- Malek MA, Madonna LA, Lu BC, Ind. Eng. Chem. Process Des. Dev., 2(1), 30 (1963)
- Mikhailik V, Collected Works on Research on Heat and Mass in Technological Processes, pp.37 (1966).
- Volpicelli G, Raso G, Massimilla L, Proceedings of the International Symposium on Fluidization, pp.123 (1967).
- Lefroy G, Davidson JF, Trans. Inst. Chem. Eng., 47, 120 (1969)
- McNab GS, Br. Chem. Eng. Process Technol., 17, 532 (1972)
- Bridgwater J, Mathur KB, Powder Technol., 6, 183 (1972)
- Green M, Bridgwater J, Can. J. Chem. Eng., 61, 281 (1983)
- San Jose MJ, Olazar M, Izquierdo MA, Alvarez S, Bilbao J, Ind. Eng. Chem. Res., 40(1), 420 (2001)
- San Jose MJ, Olazar M, Alvarez S, Morales A, Bilbao J, Ind. Eng. Chem. Res., 44(1), 193 (2005)
- Estiati I, Tellabide M, Saldarriaga JF, Altzibar H, Olazar M, Powder Technol., 344, 278 (209)
- Estiati I, Tellabide M, Pablos A, Altzibar H, Aguado R, Olazar M, Chem. Eng. Process., 155, 108062 (2020)
- Farneback G, Proc. . Int. Conf. Pattern Recognit., 15(1), 135 (2000)
- Zhang H, Liu ML, Li TJ, Huang ZY, Sun XM, Bo HL, Dong YJ, Powder Technol., 307, 175 (2017)
- Djeridane T, Larachi F, Roy D, Chaouki J, Legros R, Can. J. Chem. Eng., 76(2), 190 (1998)
- Zhao XL, Li SQ, Liu GQ, Yao Q, Marshall JS, Powder Technol., 184(2), 205 (2007)
- Olazar M, Sanjose MJ, Llamosas R, Alvarez S, Bilbao J, Ind. Eng. Chem. Res., 34(11), 4033 (1995)
- Benkrid A, Caram HS, AIChE J., 35, 1328 (1989)
- San Jose MJ, Olazar M, Alvarez S, Bilbao J, Ind. Eng. Chem. Res., 37(6), 2553 (1998)
- Wang ZG, Bi HT, Lim CJ, Can. J. Chem. Eng., 87(2), 264 (2009)
- Zhu R, Li S, Yao Q, AIP Conf. Proc., 1542, 979 (2013)
- Altzibar H, Lopez G, Bilbao J, Olazar M, Ind. Eng. Chem. Res., 52(8), 2995 (2013)
- Waldie B, Wilkinson D, Can. J. Chem. Eng., 64(6), 944 (1986)
- Zhao XL, Li SQ, Liu GQ, Song Q, Yao Q, Powder Technol., 183(1), 79 (2008)
- Olazar M, San Jose MJ, Alvarez S, Morales A, Bilbao J, Ind. Eng. Chem. Res., 37(11), 4520 (1998)
- He YL, Lim CJ, Qin SZ, Grace JR, Can. J. Chem. Eng., 76(4), 702 (1998)
- San Jose MJ, Olazar M, Llamosas R, Izquierdo MA, Bilbao J, Chem. Eng. J., 64(3), 353 (1996)
- Mukhlenov IP, Gorstein AE, Kim. Prom., 41, 443 (1965)