Applied Chemistry for Engineering, Vol.32, No.3, 326-331, June, 2021
황화수소 상온 산화를 위한 바나듐계 촉매의 제조 조건 최적화 연구
Optimization of Preparation Conditions of Vanadium-Based Catalyst for Room Temperature Oxidation of Hydrogen Sulfide
E-mail:
초록
본 연구에서는 황화수소를 상온에서 산화시키기 위한 TiO2 기반 바나듐계 촉매의 제조 조건을 최적화하였다. 촉매의 지지체로써 4종의 상용 TiO2를 선정하였으며, 함침법을 이용하여 제조된 다양한 바나듐 함량별 V/TiO2의 황화수소상온 산화 성능 평가를 수행하였다. 선정된 TiO2 중 TiO2(A)를 기반으로 하며 바나듐(V) 함량이 5%인 촉매의 황화수소전환율이 58%로 가장 우수한 것을 확인하였으며, 촉매의 물리.화학적 특성을 비교함으로써 지지체의 비표면적과 우점하는 바나듐의 종이 촉매 성능의 주요인자임을 도출하였다. 활성이 저하된 촉매의 재생 특성을 확인하기 위해 400 ℃에서 2 h 동안 열처리하였으며, 재생된 촉매에 황이 일부 침적되어 황화수소 산화량이 10% 감소하였으나 초기성능은 유사하게 나타나는 것을 확인하였다.
In this study, the preparation conditions for a TiO2-based vanadium-based catalyst for oxidizing hydrogen sulfide at room temperature were optimized. Four types of commercial TiO2 were used as a catalyst support and the performance evaluation of hydrogen sulfide oxidation at room temperature of V/TiO2 by varying vanadium contents prepared using the impregnation method was performed. Among the types of TiO2 tested, it was confirmed that the catalyst with the vanadium content of 5% and based on TiO2(A) has the best hydrogen sulfide conversion rate of 58%. By comparing the physical and chemical properties of the catalyst, the specific surface area of the support and the species of dominant vanadium are the major factor in catalyst performance. In order to confirm the regeneration characteristics of the catalyst with reduced activity, heat treatment was performed at 400 ℃ for 2 h, and the amount of hydrogen sulfide oxidation decreased by 10% due to the partial deposition of sulfur in the regenerated catalyst, but it was confirmed that the initial performance was similar.
- Ko BC, Lee JK, Lee YS, Lee MG, Kam SK, J. Environ. Sci. Int., 21, 1379 (2009)
- Kim DS, Lim HS, Kim DH, Dongguk. J. Med., 7, 145 (2000)
- Choi SY, Han DH, Kim SS, Clean Technol., 25(3), 189 (2019)
- Popoola LT, Grema AS, Latinwo GK, Gutti B, Balogun AS, Int. J. Ind. Chem., 4(35), 1 (2013)
- Lee J, Kim D, J. Odor Indoor Environ., 17, 215 (2018)
- Eom H, Jang Y, Choi SY, Lee SM, Kim SS, Appl. Catal. A: Gen., 590, 117365 (2020)
- Kim HT, Kim JH, Lee HP, J. Korean Ind. Eng. Chem., 15(5), 549 (2004)
- Ryu SH, Seo Y, Park J, Kim SD, Park SS, J. Korean Soc. Waste Manag., 34, 468 (2017)
- Nam JG, J. Korean Soc. Mar. Environ., 37, 855 (2013)
- Kinnunen NM, Kallinen K, Maunula T, Keenan M, Suvanto M, Catalysts, 9, 417 (2019)
- Eom HK, Lee SM, Kang HR, Lee YH, Chang SW, Kim SS, J. Ind. Eng. Chem., 92, 252 (2020)
- Diebold U, Surf. Sci., 48, 53 (2003)
- Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM, J. Mater. Sci. Mater. Electron., 22, 821 (2011)
- Meng X, Huang H, Weng H, Shi L, Bull. Korean Chem. Soc., 33, 3213 (2012)
- Shannon RD, Pask JA, J. Am. Ceram. Soc., 48, 391 (1965)
- Won JM, Park KH, Hong SC, Appl. Chem. Eng., 28(2), 158 (2017)
- Kim J, Jeon J, KimE, Na S, Han HS, KSAE, 5, 263 (2014)
- Eom H, Jang Y, Choi SY, Lee SM, Kim SS, Appl. Catal. A: Gen., 590, 117365 (2020)