화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 75-91, August, 2021
Ultraviolet and infrared light decontamination and the secondary pollution products of G-series nerve agent simulant model molecules contaminating TiO2/Ti surfaces
E-mail:
Ultraviolet (UV) photodecontamination of chemical warfare agents (CWAs) has been an attractive way for decontamination of target areas unapproachable by a wet chemical method. Herein, decontamination was demonstrated using UV and infrared lamps and a home-built scanning 266-nm pulse laser under air and N2 conditions for the G-series nerve agent simulant model molecules of dimethyl methylphosph- onate, dimethyl phosphite, diethyl methylphosphonate, and diethyl phosphite contaminatingTiO2/Ti sheets. Volatile secondary photodecomposition products were examined by gas chromatography and mass spectrometry, and nonvolatile surface residues by X-ray photoelectron spectroscopy, energydispersive X-ray spectroscopy, X-ray diffraction crystallography, and Fourier-transform infrared spectroscopy. The wavelength- and power-dependent mechanisms of the formation of diverse secondary products, the role of active O2 -, h+ and ㆍOH species, and the mechanisms of dissociative adsorption and photodecontamination were fully discussed and found valuable for the development of a remote laser photodecontamination method applicable to diverse CWA-contaminated target areas.
  1. Nawala J, Jozwik P, Popiel S, Int. J. Environ. Sci. Technol., 16, 3899 (2019)
  2. Kim MJ, Song EJ, Kim KH, Choi SS, Lee YS, J. Ind. Eng. Chem., 79, 465 (2019)
  3. Jang TJ, Kim K, Tsay OG, Atwood DA, Churchill DG, Chem. Rev., 115, PR1 (2015)
  4. Bobbitt NS, Mendonca ML, Howarth AJ, Islamoglu T, Hupp JT, Farha OK, Snurr RQ, Chem. Soc. Rev., 46, 3357 (2017)
  5. Vellingiri K, Philip L, Kim KH, Coord. Chem. Rev., 353, 159 (2017)
  6. Sengele A, Robert D, Keller N, Colbeau-Justin C, Keller V, Appl. Catal. B: Environ., 245, 279 (2019)
  7. Florent M, Giannakoudakis DA, Bandosz TJ, Appl. Catal. B: Environ., 272, 119039 (2020)
  8. McEntee M, Gordon WO, Balboa A, Delia DJ, Pitman CL, Pennington AM, Rolison DR, Pietron JJ, DeSario PA, ACS Appl. Nano Mater., 3/4, 3503 (2020)
  9. Xia DH, Liu HD, Xu BH, Wang YC, Liao YH, Huang YJ, Ye LQ, He C, Wong PK, Qiu RL, Appl. Catal. B: Environ., 245, 177 (2019)
  10. He X, Sun B, He M, Chi H, Wang Z, Zhang W, Ma J, Appl. Catal. B: Environ., 117, 19219 (2020)
  11. Puglisi R, Mineo PG, Pappalardo A, Gulino A, Sfrazzetto GT, Molecules, 24, 2160 (2019)
  12. Jeon S, Balow RB, Daniels GC, Ko JS, Pehrsson PE, ACS Appl. Nano Mater., 2, 2295 (2019)
  13. Balow RB, Lundin JG, Daniels GC, Gordon WO, McEntee M, Peterson GW, Wynne JH, Pehrsson PE, ACS Appl. Mater. Inter., 9, 39747 (2017)
  14. Ash T, Debnath T, Banu T, Das AK, Chem. Res. Toxicol., 29, 1439 (2016)
  15. Shan X, Sambrook MR, Clary DC, J. Phys. Chem. A, 123(1), 59 (2019)
  16. Tang X, Hicks Z, Wang L, Gantefor G, Bowen KH, Tsyshevsky R, Sund J, Kuklja MM, Phys. Chem. Chem. Phys., 20, 4840 (2018)
  17. Placha D, Kovar P, Vanek J, Mikeska M, Skrlova K, Dutko O, Rehackova L, Slabotinsky J, J. Hazard. Mater., 382, 121001 (2020)
  18. Grissom TG, Plonka AM, Sharp CH, Ebrahim AM, Tian Y, Collins-Wildman DL, et al., ACS Appl. Mater. Interfaces, 12, 14641 (2020)
  19. Bisio C, Carniato F, Palumbo C, Safronyuk SL, Starodub MF, Katsev AM, Marchese L, Guidotti M, Catal. Today, 277, 192 (2016)
  20. Holdren S, Tsyshevsky R, Fears K, Owrutsky J, Wu T, Wang X, Eichhorn BW, Kuklja MN, Zachariah MR, ACS Catal., 9, 902 (2019)
  21. Bermudez VM, Surf. Sci., 604, 706 (2010)
  22. Quintero YC, Nagarajan R, Surf. Sci., 675, 26 (2018)
  23. Bermudez VM, J. Phys. Chem. C, 115, 6741 (2011)
  24. Xu P, Guo S, Yu H, Li X, Small, 10, 2404 (2014)
  25. Rusu CN, Yates JT, J. Phys. Chem. B, 104(51), 12292 (2000)
  26. Head AR, Tsyshevsky R, Trotochaud L, Yu Y, Kyhl L, Karslıoglu O, Kuklja MM, Bluhm H, J. Phys. Chem. C, 120, 29077 (2016)
  27. Trotochaud L, Tsyshevsky R, Holdren S, Fears K, Head AR, Yu Y, et al.,, Chem. Mater., 29, 7483 (2017)
  28. Gordon WO, Tissue BM, Morris JR, J. Phys. Chem. C, 111, 3233 (2007)
  29. Yang L, Taylor R, de Jong WA, Hase WL, J. Phys. Chem. C, 115, 12403 (2011)
  30. Moss JA, Szczepankiewicz SH, Park E, Hoffmann MR, J. Phys. Chem. B, 109(42), 19779 (2005)
  31. Panayotov DA, Morris JR, J. Phys. Chem. C, 112, 7496 (2008)
  32. Mitchell MB, Sheinker VN, Cox WW, Gatimu EN, Tesfamichael AB, J. Phys. Chem. B, 108(5), 1634 (2004)
  33. Zhou J, Ma S, Kang YC, Chen DA, J. Phys. Chem. B, 108(31), 11633 (2004)
  34. Ratliff JS, Tenney SA, Hu XF, Conner SF, Ma SG, Chen DA, Langmuir, 25(1), 216 (2009)
  35. Henych J, Stengl V, Mattsson A, Tolasz J, Osterlund L, J. Hazard. Mater., 359, 482 (2018)
  36. Langlois GG, Thompson RS, Li W, Sibener SJ, J. Phys. Chem. C, 120, 16863 (2016)
  37. Kim DB, Gweon B, Moon SY, Choe W, Curr. Appl. Phys., 9(5), 1093 (2009)
  38. Ash T, Debnath T, Ghosh A, Das AK, Chem. Res. Toxicol., 30, 1177 (2017)
  39. Panayotov DA, Morris JR, Langmuir, 25(6), 3652 (2009)
  40. Yang L, Tunega D, Xu L, Govind N, Sun R, Taylor R, Lischka H, Dejong WA, Hase WL, J. Phys. Chem. C, 117, 17613 (2013)
  41. Panayotov DA, Morris JR, J. Phys. Chem. C, 113, 15684 (2009)
  42. Trubitsyn DA, Vorontsov AV, J. Phys. Chem. B, 109(46), 21884 (2005)
  43. Obee TN, Satyapal S, J. Photochem. Photobiol. A-Chem., 118, 45 (1998)
  44. Hirakawa T, Sato K, Komano A, Kishi S, Nishimoto CK, Mera N, Kugishima M, Sano T, Ichinose H, Negishi N, Seto Y, Takeuchi K, J. Phys. Chem. C, 114, 2305 (2010)
  45. Komano A, Hirakawa T, Sato K, Kishi S, Nishimoto CK, Mera N, Kugishima M, Sano T, Negishi N, Ichinose H, Seto Y, Takeuchi K, Appl. Catal. B: Environ., 134-135, 19 (2013)
  46. Besov AS, Vorontsov AV, Parmon VN, Appl. Catal. B: Environ., 89(3-4), 602 (2009)
  47. Zuo GM, Cheng ZX, Li GW, Shi WP, Miao T, Chem. Eng. J., 128(2-3), 135 (2007)
  48. Neatu S, Cojocaru B, Parvulescu VI, Somoghi V, Alvarro M, Garcia H, J. Mater. Chem., 20, 4050 (2010)
  49. Henych J, Stehlik S, Mazanec K, Tolasz J, Cermak J, Rezek B, Mattsson A, Osterlund L, Appl. Catal. B: Environ., 259, 118097 (2019)
  50. Rusu CN, Yates JT, J. Phys. Chem. B, 104(51), 12299 (2000)
  51. Han ST, Zhang GY, Xi HL, Xu DN, Fu XZ, Wang XX, Catal. Lett., 122(1-2), 106 (2008)
  52. Mera N, Hirakawa T, Sano T, Takeuchi K, Ichinose H, Seto Y, Negishi N, Appl. Catal. B: Environ., 46, 71 (2014)
  53. Halasi G, Ugrai I, Solymosi F, J. Catal., 281(2), 309 (2011)
  54. Jeon S, Schweigert IV, Pehrsson PE, Balow RB, ACS Appl. Mater. Interfaces, 12, 14662 (2020)
  55. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012).
  56. Roy N, Sohn Y, Leung KT, Pradhan D, J. Phys. Chem. C, 118, 29499 (2014)
  57. Walenta CA, Xu F, Tesvara C, O’Connor CR, Sautet P, Friend CM, J. Phys. Chem. C, 124, 12432 (2020)
  58. Kim T, Yang JH, Park SJ, Nguyen HQ, Kim J, Yee KY, Jung H, Kang JG, Sohn Y, Appl. Catal. B: Environ., 284, 119623 (2021)
  59. NIST DTSA-II software (https://cstl.nist.gov/div837/837.02/epq/dtsa2/).