화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.3, 435-442, August, 2021
균일용액침전법에서 수세여부와 건조온도가 망간이 첨가된 바륨헥사알루미네이트의 제조에 미치는 영향
Effect of Water Wash and Dry Temperature in Homogeneous Precipitation Method on the Manufacture of Mn-added Barium Hexaaluminates
E-mail:
초록
요소를 이용한 균일용액침전법으로 망간이 첨가된 바륨 헥사알루미네이트를 제조하였다. 합성 후 수세 여부와 건조온도에 따른 영향을 열중량분석, X선 회절분석과 장방출 주사현미경으로 분석하였다. 수세하지 않은 여과단계만 거친소성촉매가 수세단계를 거친 소성촉매보다 순수한 헥사알루미네이트 상을 얻을 수 있었다. 건조과정 동안 합성 후 잔존한 요소가 전구체에 탈수과정을 도와 주요 금속종인 깁사이트를 순수한 헥사알루미네이트로 변환되기 쉬운 보에마이트로 상변이에 영향을 주었다. 제조된 촉매의 메탄 연소성능 평가는 WO200이 가장 우수하였으며, 모든 촉매연소반응에서 NOx가 배출되지 않았다. 헥사알루미네이트는 최고 CO 배출량을 감소시키는데 영향을 주는 것으로 확인되었다.
Mn-added Barium hexaaluminates were manufactured by homogeneous precipitation method using Urea. The effects of water wash and dry temperature were analyzed by thermal weight analysis, X-ray diffraction analysis, and scanning electron microscopy. Catalysts that went through the filtration step only produced pure hexaaluminate images compared to those that went through the water wash step. During the drying process, it seems that the remaining urea helps dehydration of the precursor and affects the phase shift of gibbsite to boehmite, which is easy to convert to pure hexaaluminate. The catalyst WO200 gave the best performance in the methane combustion reaction, and NOx was not emitted in the reaction for all catalysts. Hexaaluminates were found to affect reducing the highest CO emissions.
  1. Prefferle LD, Prefferle WC, Catal. Rev.-Sci. Eng., 29, 219 (1987)
  2. Arai H, Yamada T, Eguchi K, Appl. Catal., 26, 265 (1986)
  3. McCarty JG, Wise H, Catal. Today, 8, 231 (1990)
  4. Machida M, Eughi K, Arai H, J. Catal., 103, 385 (1987)
  5. Beguin B, Garbowski E, Primet M, Appl. Catal., 75(1), 119 (1991)
  6. Machida M, Eguchi K, Arai H, J. Catal., 123(2), 477 (1990)
  7. Beguin B, Garbowski E, Primet M, J. Catal., 127(2), 595 (1991)
  8. Groppi G, Bellotto M, Cristiam C, Forzatti P, Villa PL, Appl. Catal. A: Gen., 104(2), 101 (1993)
  9. Maeda K, Mizukami F, Niwa S, Toba M, Watanabe M, Masuda K, Faraday Trans., 88(1), 97 (1992)
  10. Maeda K, Mizukami F, Watanabe M, Arai N, Toba M, Shimizu K, J. Mater. Sci. Lett., 9(5), 522 (1990)
  11. Mao CF, Vannice MA, Appl. Catal. A: Gen., 111(2), 151 (1994)
  12. Maeda K, Mizukami F, Watanabe M, Arai N, Toba M, Shimizu K, J. Mater. Sci. Lett., 9(5), 522 (1990)
  13. Serantoni M, Costa AL, Zanelli C, Esposito L, Ceram. Int., 40(8), 11837 (2014)
  14. Martino CJ, Fondeur FF, “Gibbsite/Bayerite and Uranium in Tank 41H,”WSRC-RP-2002-00530(2002).
  15. Casapu M, Grunwaldt JD, Maciejewski M, Wittrock M, Gobel U, Baiker A, Appl. Catal. B: Environ., 63(3-4), 232 (2006)
  16. Yin FX, Ji SF, Wu PY, Zhao F, Li CY, J. Mol. Catal. A-Chem., 294(1-2), 27 (2008)
  17. Park JY, Jung YS, Rhee YW, Korean Chem. Eng. Res., 56(3), 349 (2018)
  18. Jana P, Jayan PS, Mandal S, Biswas K, J. Cryst. Growth, 408, 7 (2014)
  19. Kundu S, Naskar MK, Bull. Mat. Sci., 41, 161 (2018)
  20. Bernhard AM, Peitz D, Elsener M, Wokaun A, Krocher O, Appl. Catal. B: Environ., 115, 129 (2012)
  21. Chen D, Zhang LH, Li HZ, Liu Y, Appl. Surf. Sci., 301, 280 (2014)
  22. Bell TE, Gonzalez-Carballo JM, Tooze RP, Torrente-Murciano L, RSC. Adv., 7, 22369 (2017)
  23. Yin FX, Ji SF, Wu PY, Zhao F, Li CY, J. Mol. Catal. A-Chem., 294(1-2), 27 (2008)