화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 142-153, November, 2021
MnO2/carbon nanotube-embedded carbon nanofibers as core-shell cables for high performing asymmetric flexible supercapacitors
E-mail:
Supercapacitors (SCs) are important devices for energy storage because they provide a higher power density as compared to that of batteries. However, SCs with high energy density and good flexibility are still under development. In this study, we fabricated MnO2-coated Carbon nanotube (CNT)-embedded carbon nanofiber (CNF) (referred to as MnO2/CNF-CNT) core.shell cables to investigate pseudo-capacitators, while activated CNF-CNTs obtained by CO2 activation was used for Electrical double-layer capacitors (EDLCs). Owing to the unique structure of the materials and high electrical conductivity of the CNTs on the CNFs, a specific capacitance of 483.5 F/g was achieved using MnO2/CNF-CNT mat with 1 M Na2SO4 aqueous electrolyte at 0.5 A/g. A flexible MnO2/CNF-CNT supercapacitor was assembled, which was binder-free, electrically conductive media-free, and current collector-free. Further an asymmetric supercapacitor was assembled with the MnO2/CNF-CNT mat and activated CNF-CNT mat in an ionic liquid (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide) electrolyte. The maximum specific capacitance of, energy density of and power density of 94.25 F/g, 209.4 Wh/kg and 1000 W/kg can be achieved with the asymmetric supercapacitor at 0.5 A/g and 4.0 V. We believe that these materials have significant potential for use in light-weight and flexible SCs.
  1. Zhang YF, Zheng JQ, Hu T, Tian FP, Meng CG, Appl. Surf. Sci., 371, 189 (2016)
  2. Vangari M, Pryor T, Jiang L, J. Energy Eng., 139(2), 72 (2013)
  3. Gidwani M, Bhagwani A, Rohra N, Int. J. Eng. Invent., 4(5), 22 (2014)
  4. Rakhi RB, Nagaraju DH, Beaujuge P, Alshareef HN, Electrochim. Acta, 220, 601 (2016)
  5. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH, Adv. Mater., 13(7), 497 (2001)
  6. Miller JR, Outlaw RA, Holloway BC, Science, 329(5999), 1637 (2010)
  7. Pan X, Zhao Y, Ren G, Fan Z, Chem. Commun., 49(38), 3943 (2013)
  8. Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8(3), 702 (2015)
  9. Ortaboy S, Alper JP, Rossi F, Bertoni G, Salviati G, Carraro C, et al., Energy Environ. Sci., 10(6), 1505 (2017)
  10. Lu X, Shen C, Zhang Z, Barrios E, Zhai L, ACS Appl. Mater. Interfaces, 10(4), 4041 (2018)
  11. Rinaldi G, Assembly Automation (2010).
  12. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 332(6037), 1537 (2011)
  13. Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, et al., Carbon, 67, 119 (2014)
  14. Dieu HTT, Charoensook K, Tai HC, Lin YT, Li YY, J. Porous Mater., 1 (2020).
  15. Qiu Y, Xu P, Guo B, Cheng Z, Fan H, Yang M, et al., RSC Adv., 4(109), 64187 (2014)
  16. Cazorlaamoros D, Alcanizmonge J, Linaressolano A, Langmuir, 12(11), 2820 (1996)
  17. Lian C, Liu K, Van Aken KL, Gogotsi Y, Wesolowski DJ, Liu H, et al., ACS Energy Lett., 1(1), 21 (2016)
  18. He T, Meng X, Nie J, Tong Y, Cai K, ACS Appl. Mater. Interfaces., 8(22), 13865 (2016)
  19. Liu CF, Liu YC, Yi TY, Hu CC, Carbon, 145, 529 (2019)
  20. Liu W, Liu N, Yue Y, Rao J, Cheng F, Su J, et al., Small, 14(15), 170414 (2018)
  21. Tao J, Liu N, Rao J, Dign L, Bahrani MRA, Li L, et al., Nanoscale, 6(24), 15073 (2014)
  22. Li T, Yu H, Zhi L, Zhang W, Dang L, Liu Z, et al., J. Phys. Chem. C, 121(35), 18982 (2017)
  23. Liu NS, Ma WZ, Tao JY, Zhang XH, Su J, Li LY, Yang CX, Gao YH, Golberg D, Bando Y, Adv. Mater., 25(35), 4925 (2013)
  24. Chortos A, Bao Z, Mater. Today, 17(7), 321 (2014)
  25. Yue Y, Liu N, Ma Y, Wang S, Liu W, Luo C, et al., ACS Nano, 12(5), 4224 (2018)
  26. Zhi L, Zhang WL, Dang LQ, Sun J, Shi F, Xu H, Liu ZH, Lei ZB, J. Power Sources, 387, 108 (2018)
  27. Wang P, Zhao YJ, Wen LX, Chen JF, Lei ZG, Ind. Eng. Chem. Chem. Res., 53(52), 20116 (2014)
  28. Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, et al., Chem. Soc. Rev., 44(3), 647 (2015)
  29. Dong L, Xu C, Li Y, Huang ZH, Kang F, Yang QH, et al., J. Mater. Chem. A, 4(13), 4659 (2016)
  30. Lu X, Yu M, Wang G, Tong Y, Li Y, Energy Environ. Sci, 7(7), 2160 (2014)
  31. Wang S, Liu N, Yang C, Liu W, Su J, Li L, et al., RSC Adv., 5(104), 85799 (2015)
  32. Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H, Adv. Mater., 29(32), 170080 (2017)
  33. Sekhar SC, Nagaraju G, Yu JS, Nano Energy, 36, 58 (2017)
  34. Song Y, Liu T, Yao B, Li M, Kou T, Huang ZH, et al., ACS Energy Lett., 2(8), 1752 (2017)
  35. Toupin M, Brousse T, Belanger D, Chem. Mater., 16(16), 3184 (2004)
  36. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP, Solid State Ion., 159(3-4), 345 (2003)
  37. Lee HY, Goodenough JB, J. Solid State Chem., 144(1), 220 (1999)
  38. Yan WB, Kim JY, Xing WD, Donavan KC, Ayvazian T, Penner RM, Chem. Mater., 24(12), 2382 (2012)
  39. Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F, J. Electrochem. Soc., 152(1), A229 (2005)
  40. Tsai YC, Yang WD, Lee KC, Huang CM, Materials, 9(4), 13 (2016)
  41. Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, et al., Nano Lett., 14(2), 731 (2014)
  42. Li X, Wang G, Wang X, Li X, Ji J, J. Mater. Chem. A, 1(35), 10103 (2013)
  43. Du Y, Zhao X, Huang Z, Li Y, Zhang Q, RSC Adv., 4(74), 39087 (2014)
  44. Gu X, Yue J, Li LJ, Xue HT, Yang J, Zhao XB, Electrochim. Acta, 184, 250 (2015)
  45. Zhang X, Sun XZ, Zhang HT, Zhang DC, Ma YW, Electrochim. Acta, 87, 637 (2013)
  46. Sarkar A, Satpati AK, Kumar V, Kumar S, Electrochim. Acta, 167, 126 (2015)
  47. Babakhani B, Ivey DG, J. Power Sources, 196(24), 10762 (2011)
  48. Hu X, Lin X, Ling ZY, Li Y, Fu XY, Electrochim. Acta, 138, 132 (2014)
  49. Xu H, Hu X, Sun Y, Yang H, Liu X, Huang Y, Nano Res., 8(4), 1148 (2015)
  50. Wei WF, Cui XW, Mao XH, Chen WX, Ivey DG, Electrochim. Acta, 56(3), 1619 (2011)
  51. Xiao F, Xu Y, Int. J. Electrochem. Sci., 7, 7440 (2012)
  52. Ali GA, Yusoff MM, Ng YH, Lim HN, Chong KF, Curr. Appl. Phys., 15(10), 1143 (2015)
  53. Rusi, Majid SR, Solid State Ion., 262, 220 (2014)
  54. Lin SC, Lu YT, Chien YA, Wang JA, You TH, Wang YS, Lin CW, Ma CCM, Hu CC, J. Power Sources, 362, 258 (2017)
  55. Ye ZG, Li T, Ma G, Peng XY, Zhao J, J. Power Sources, 351, 51 (2017)
  56. Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, et al., Joule, 3(2), 459 (2019)
  57. Ma Q, Yang M, Xia XH, Chen H, Yang L, Liu HB, Electrochim. Acta, 291, 9 (2018)
  58. Chastain J, King RC, Perkin-Elmer Corporation, 40, 221 (1992)
  59. Amade R, Muyshegyan-Avetisyan A, Gonzalez JM, del Pino AP, Gyorgy E, Pascual E, et al., Materials, 12(3), 483 (2019)
  60. Liu X, Chen G, Guan HT, Dong CJ, Xiao XC, Wang YD, Electrochim. Acta, 189, 83 (2016)
  61. Ruan C, Li P, Xu J, Chen Y, Xie Y, Inorg. Chem. Front., 6(12), 3583 (2019)
  62. Li Z, Gadipelli S, Li H, Howard CA, Brett DJL, Shearing PR, et al., Nat. Energy, 5(2), 160 (2020)
  63. Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2-3), 348 (2010)
  64. Daley M, Tandon D, Economy J, Hippo E, Carbon, 34(10), 1191 (1996)
  65. Liu J, Zhang L, Wu HB, Lin J, Shen Z, Lou XWD, Energy Environ. Sci., 7(11), 3709 (2014)
  66. Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y, Adv. Eng. Mater., 4(10), 140006 (2014)
  67. Liu N, Su Y, Wang Z, Wang Z, Xia J, Chen Y, et al., ACS nano, 11(8), 7879 (2017)
  68. Li X, Xu J, Feng T, Yao Q, Xie J, Xia H, Adv. Funct. Mater, 27(14), 160672 (2017)
  69. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM, ACS nano, 4(10), 5835 (2010)
  70. Chen H, Hu LF, Chen M, Yan Y, Wu LM, Adv. Funct. Mater., 24(7), 934 (2014)
  71. Deng MJ, Chou TH, Yeh LH, Chen JM, Lu KT, J. Mater. Chem. A, 6(42), 20686 (2018)
  72. Yang J, Lian LF, Ruan HC, Xie FY, Wei MD, Electrochim. Acta, 136, 189 (2014)