Journal of Industrial and Engineering Chemistry, Vol.103, 142-153, November, 2021
MnO2/carbon nanotube-embedded carbon nanofibers as core-shell cables for high performing asymmetric flexible supercapacitors
E-mail:
Supercapacitors (SCs) are important devices for energy storage because they provide a higher power density as compared to that of batteries. However, SCs with high energy density and good flexibility are still under development. In this study, we fabricated MnO2-coated Carbon nanotube (CNT)-embedded carbon nanofiber (CNF) (referred to as MnO2/CNF-CNT) core.shell cables to investigate pseudo-capacitators, while activated CNF-CNTs obtained by CO2 activation was used for Electrical double-layer capacitors (EDLCs). Owing to the unique structure of the materials and high electrical conductivity of the CNTs on the CNFs, a specific capacitance of 483.5 F/g was achieved using MnO2/CNF-CNT mat with 1 M Na2SO4 aqueous electrolyte at 0.5 A/g. A flexible MnO2/CNF-CNT supercapacitor was assembled, which was binder-free, electrically conductive media-free, and current collector-free. Further an asymmetric supercapacitor was assembled with the MnO2/CNF-CNT mat and activated CNF-CNT mat in an ionic liquid (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide) electrolyte. The maximum specific capacitance of, energy density of and power density of 94.25 F/g, 209.4 Wh/kg and 1000 W/kg can be achieved with the asymmetric supercapacitor at 0.5 A/g and 4.0 V. We believe that these materials have significant potential for use in light-weight and flexible SCs.
- Zhang YF, Zheng JQ, Hu T, Tian FP, Meng CG, Appl. Surf. Sci., 371, 189 (2016)
- Vangari M, Pryor T, Jiang L, J. Energy Eng., 139(2), 72 (2013)
- Gidwani M, Bhagwani A, Rohra N, Int. J. Eng. Invent., 4(5), 22 (2014)
- Rakhi RB, Nagaraju DH, Beaujuge P, Alshareef HN, Electrochim. Acta, 220, 601 (2016)
- An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH, Adv. Mater., 13(7), 497 (2001)
- Miller JR, Outlaw RA, Holloway BC, Science, 329(5999), 1637 (2010)
- Pan X, Zhao Y, Ren G, Fan Z, Chem. Commun., 49(38), 3943 (2013)
- Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8(3), 702 (2015)
- Ortaboy S, Alper JP, Rossi F, Bertoni G, Salviati G, Carraro C, et al., Energy Environ. Sci., 10(6), 1505 (2017)
- Lu X, Shen C, Zhang Z, Barrios E, Zhai L, ACS Appl. Mater. Interfaces, 10(4), 4041 (2018)
- Rinaldi G, Assembly Automation (2010).
- Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS, Science, 332(6037), 1537 (2011)
- Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, et al., Carbon, 67, 119 (2014)
- Dieu HTT, Charoensook K, Tai HC, Lin YT, Li YY, J. Porous Mater., 1 (2020).
- Qiu Y, Xu P, Guo B, Cheng Z, Fan H, Yang M, et al., RSC Adv., 4(109), 64187 (2014)
- Cazorlaamoros D, Alcanizmonge J, Linaressolano A, Langmuir, 12(11), 2820 (1996)
- Lian C, Liu K, Van Aken KL, Gogotsi Y, Wesolowski DJ, Liu H, et al., ACS Energy Lett., 1(1), 21 (2016)
- He T, Meng X, Nie J, Tong Y, Cai K, ACS Appl. Mater. Interfaces., 8(22), 13865 (2016)
- Liu CF, Liu YC, Yi TY, Hu CC, Carbon, 145, 529 (2019)
- Liu W, Liu N, Yue Y, Rao J, Cheng F, Su J, et al., Small, 14(15), 170414 (2018)
- Tao J, Liu N, Rao J, Dign L, Bahrani MRA, Li L, et al., Nanoscale, 6(24), 15073 (2014)
- Li T, Yu H, Zhi L, Zhang W, Dang L, Liu Z, et al., J. Phys. Chem. C, 121(35), 18982 (2017)
- Liu NS, Ma WZ, Tao JY, Zhang XH, Su J, Li LY, Yang CX, Gao YH, Golberg D, Bando Y, Adv. Mater., 25(35), 4925 (2013)
- Chortos A, Bao Z, Mater. Today, 17(7), 321 (2014)
- Yue Y, Liu N, Ma Y, Wang S, Liu W, Luo C, et al., ACS Nano, 12(5), 4224 (2018)
- Zhi L, Zhang WL, Dang LQ, Sun J, Shi F, Xu H, Liu ZH, Lei ZB, J. Power Sources, 387, 108 (2018)
- Wang P, Zhao YJ, Wen LX, Chen JF, Lei ZG, Ind. Eng. Chem. Chem. Res., 53(52), 20116 (2014)
- Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, et al., Chem. Soc. Rev., 44(3), 647 (2015)
- Dong L, Xu C, Li Y, Huang ZH, Kang F, Yang QH, et al., J. Mater. Chem. A, 4(13), 4659 (2016)
- Lu X, Yu M, Wang G, Tong Y, Li Y, Energy Environ. Sci, 7(7), 2160 (2014)
- Wang S, Liu N, Yang C, Liu W, Su J, Li L, et al., RSC Adv., 5(104), 85799 (2015)
- Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H, Adv. Mater., 29(32), 170080 (2017)
- Sekhar SC, Nagaraju G, Yu JS, Nano Energy, 36, 58 (2017)
- Song Y, Liu T, Yao B, Li M, Kou T, Huang ZH, et al., ACS Energy Lett., 2(8), 1752 (2017)
- Toupin M, Brousse T, Belanger D, Chem. Mater., 16(16), 3184 (2004)
- Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP, Solid State Ion., 159(3-4), 345 (2003)
- Lee HY, Goodenough JB, J. Solid State Chem., 144(1), 220 (1999)
- Yan WB, Kim JY, Xing WD, Donavan KC, Ayvazian T, Penner RM, Chem. Mater., 24(12), 2382 (2012)
- Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F, J. Electrochem. Soc., 152(1), A229 (2005)
- Tsai YC, Yang WD, Lee KC, Huang CM, Materials, 9(4), 13 (2016)
- Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, et al., Nano Lett., 14(2), 731 (2014)
- Li X, Wang G, Wang X, Li X, Ji J, J. Mater. Chem. A, 1(35), 10103 (2013)
- Du Y, Zhao X, Huang Z, Li Y, Zhang Q, RSC Adv., 4(74), 39087 (2014)
- Gu X, Yue J, Li LJ, Xue HT, Yang J, Zhao XB, Electrochim. Acta, 184, 250 (2015)
- Zhang X, Sun XZ, Zhang HT, Zhang DC, Ma YW, Electrochim. Acta, 87, 637 (2013)
- Sarkar A, Satpati AK, Kumar V, Kumar S, Electrochim. Acta, 167, 126 (2015)
- Babakhani B, Ivey DG, J. Power Sources, 196(24), 10762 (2011)
- Hu X, Lin X, Ling ZY, Li Y, Fu XY, Electrochim. Acta, 138, 132 (2014)
- Xu H, Hu X, Sun Y, Yang H, Liu X, Huang Y, Nano Res., 8(4), 1148 (2015)
- Wei WF, Cui XW, Mao XH, Chen WX, Ivey DG, Electrochim. Acta, 56(3), 1619 (2011)
- Xiao F, Xu Y, Int. J. Electrochem. Sci., 7, 7440 (2012)
- Ali GA, Yusoff MM, Ng YH, Lim HN, Chong KF, Curr. Appl. Phys., 15(10), 1143 (2015)
- Rusi, Majid SR, Solid State Ion., 262, 220 (2014)
- Lin SC, Lu YT, Chien YA, Wang JA, You TH, Wang YS, Lin CW, Ma CCM, Hu CC, J. Power Sources, 362, 258 (2017)
- Ye ZG, Li T, Ma G, Peng XY, Zhao J, J. Power Sources, 351, 51 (2017)
- Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, et al., Joule, 3(2), 459 (2019)
- Ma Q, Yang M, Xia XH, Chen H, Yang L, Liu HB, Electrochim. Acta, 291, 9 (2018)
- Chastain J, King RC, Perkin-Elmer Corporation, 40, 221 (1992)
- Amade R, Muyshegyan-Avetisyan A, Gonzalez JM, del Pino AP, Gyorgy E, Pascual E, et al., Materials, 12(3), 483 (2019)
- Liu X, Chen G, Guan HT, Dong CJ, Xiao XC, Wang YD, Electrochim. Acta, 189, 83 (2016)
- Ruan C, Li P, Xu J, Chen Y, Xie Y, Inorg. Chem. Front., 6(12), 3583 (2019)
- Li Z, Gadipelli S, Li H, Howard CA, Brett DJL, Shearing PR, et al., Nat. Energy, 5(2), 160 (2020)
- Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2-3), 348 (2010)
- Daley M, Tandon D, Economy J, Hippo E, Carbon, 34(10), 1191 (1996)
- Liu J, Zhang L, Wu HB, Lin J, Shen Z, Lou XWD, Energy Environ. Sci., 7(11), 3709 (2014)
- Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y, Adv. Eng. Mater., 4(10), 140006 (2014)
- Liu N, Su Y, Wang Z, Wang Z, Xia J, Chen Y, et al., ACS nano, 11(8), 7879 (2017)
- Li X, Xu J, Feng T, Yao Q, Xie J, Xia H, Adv. Funct. Mater, 27(14), 160672 (2017)
- Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM, ACS nano, 4(10), 5835 (2010)
- Chen H, Hu LF, Chen M, Yan Y, Wu LM, Adv. Funct. Mater., 24(7), 934 (2014)
- Deng MJ, Chou TH, Yeh LH, Chen JM, Lu KT, J. Mater. Chem. A, 6(42), 20686 (2018)
- Yang J, Lian LF, Ruan HC, Xie FY, Wei MD, Electrochim. Acta, 136, 189 (2014)