Journal of Industrial and Engineering Chemistry, Vol.107, 365-375, March, 2022
Structural characteristics and thermal properties of regenerated cellulose, hemicellulose and lignin after being dissolved in ionic liquids
E-mail:,
This study investigated the use of ionic liquids such as 1-butyl-3-methylimidazolium chloride, 4-butyl-4-methyl morpholinium chloride, 1-butyl-1-methylpiperidinium chloride, and 1,3-dimethylimidazolium methylphosphite to dissolve cellulose, hemicellulose, and lignin biomass, as alternatives to highly toxic organic solvents. The biomass treated with the ionic liquids is characterized by scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and Fourier-transform infrared spectroscopy. The X-ray diffraction results revealed that most of the biomass treated with ionic liquids had low crystallinity after treatment with the ionic liquids. Thermogravimetric analysis confirmed that the pyrolysis temperature of the biomass treated with the ionic liquid decreased. However, it was found that the pyrolysis temperature of the biomass was increased again after the ionic liquid was washed with an antisolvent. This result was interpreted using Fourier-transform infrared spectroscopy to show that the O–H hydrogen bonding of cellulose was restored. The experimental results from this study can help provide a better understanding of the biomass regeneration mechanism of ionic liquids and increase the applicability of biomass in various fields.
- Bajpai P, Structure of lignocellulosic biomass, Springer, Singapore, 2016.
- Desvaux M, Fems Microbiol. Rev., 29, 741 (2005)
- Saito T, Kimura S, Nishiyama Y, Isogai A, Biomacromolecules, 8, 2485 (2007)
- Isogai A, Saito T, Fukuzumi H, Nanoscale, 3, 74 (2011)
- Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124, 4974 (2002)
- Wang X, Li H, Cao Y, Tang Q, Bioresour. Technol., 102, 7959 (2011)
- Woiciechowski AL, Neto CJD, de Souza Vandenberghe LP, de Carvalho Neto DP, Sydney ACN, Letti LAJ, Karp SG, Torres LAZ, Soccol CR, Bioresour. Technol., 304, 122848 (2020)
- Somers AE, Howlett PC, MacFarlane DR, Forsyth M, Lubricants, 1, 3 (2013)
- Le Bui TT, Nguyen DD, Van Ho S, Nguyen BT, Uong HTN, Fuel, 191, 54 (2017)
- Strehmel V, Wetzel H, Laschewsky A, Macromolecules, 342, 78 (2014)
- Kukawka R, Januszewski R, Kownacki I, Smiglak M, Maciejewski H, Catal. Commun., 108, 59 (2018)
- Kukawka R, Pawlowska-Zygarowicz A, Dutkiewicz M, Maciejewski H, Smiglak M, RSC Adv., 6, 61860 (2016)
- Kokorin A, Ionic liquids: applications and perspectives, InTech, Croatia, 2011.
- Yang J, Cai D, Zeng T, Zhou L, Li L, Hong R, Qiu T, Chin. J. Chem. Eng., 24, 1561 (2016)
- Viau L, Tourne-Peteilh C, Devoisselle JM, Vioux A, Chem. Commun., 46, 228 (2010)
- Dobler D, Schmidts T, Klingenhofer I, Runkel F, Int. J. Pharm., 441, 620 (2013)
- Branco LC, Crespo JG, Afonso CAM, Angew. Chem.-Int. Edit., 41, 2771 (2002)
- Karuppasamy K, Rhee HW, Reddy PA, Gupta D, Mitu L, Polu AR, Shajan XS, J. Ind. Eng. Chem., 40, 168 (2016)
- Singh A, Dhapola PS, Singh S, Singh PK, Samsudin AS, Sahoo NG, Rhee HW, High Perform. Polym., 33, 469 (2021)
- da Costa Lopes AM, Joao KG, Bogel-Lukasik E, Roseiro LB, Bogel-Lukasik R, J. Agric. Food Chem., 61, 7874 (2013)
- Reichardt C, Green Chem., 7, 339 (2005)
- Stark A, Seddon KR, Ionic Liquids, John Wiley & Sons, Inc, 2000.
- Zajac A, Kukawka R, Pawlowska-Zygarowicz A, Stolarska O, Smiglak M, Green Chem., 20, 4764 (2018)
- Ohno H, in: John Wiley & Sons (Eds.), In Electrochemical Aspects of Ionic Liquids, Wiley-Interscience, pp.1-3, 2005.
- Feng L, Chen Z, J. Mol. Liq., 142, 1 (2008)
- Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD, Green Chem., 1, 53 (2016)
- Endo T, Hosomi S, Fujii S, Ninomiya K, Takahashi K, J. Phys. Chem. Lett., 7, 5156 (2016)
- Thomas S, Mishra RK, Asiri AM, in: Inamuddin (Eds.), Sustainable polymer composites and nanocomposites, Springer, Cham, pp. 653-691, 2019.
- Prado R, Erdocia X, Labidi J, J. Chem. Technol. Biotechnol., 88, 1248 (2013)
- Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS, Biotechnol. Bioeng., 108, 1229 (2011)
- Stark A, Energy Environ. Sci., 4, 19 (2011)
- Trinh LTP, Lee YJ, Park CS, Bae HJ, J. Ind. Eng. Chem., 69, 57 (2019)
- Yang J, Lu X, Zhang Y, Xu J, Yang Y, Zhou Q, Green Energy Environ., 5, 223 (2020)
- Kim KS, Choi S, Demberelnyamba D, Lee H, Oh J, Lee BB, Mun SJ, Chem. Commun., 7, 828 (2004)
- Sirvio JA, Visanko M, Liimatainen H, Green Chem., 17, 3401 (2015)
- Lee SH, Doherty TV, Linhardt RJ, Dordick JS, Biotechnol. Bioeng., 102, 1368 (2009)
- Peleteiro S, Rivas S, Alonso JL, Santos V, Parajo JC, Bioresour. Technol., 202, 181 (2016)
- Tadesse H, Luque R, Energy Environ. Sci., 4, 3913 (2011)
- Xia S, Baker GA, Li H, Ravula S, Zhao H, RSC Adv., 4, 10586 (2014)
- Cichosz S, Masek A, Materials, 13, 4573 (2020)
- Janardhnan S, Sain M, Int. J. Polym. Sci., 2011 (2011)
- Galiwango E, Rahman NSA, Al-Marzouqi AH, Abu-Omar MM, Khaleel AA, Heliyon, 5 (2019)
- Malutan T, Nicu R, Popa VI, Bioresources, 3, 13 (2008)
- Shankar S, Reddy JP, Rhim JW, Int. J. Biol. Macromol., 81, 267 (2015)
- Donelley BJ, Helm JL, Lee HA, Cereal Chem., 50 (1974)
- Gupta MN, Batra R, Tyagi R, Sharma A, Biotechnol. Prog., 13, 284 (1997)
- Pinkert A, Goeke DF, Marsh KN, Pang S, Green Chem., 13, 3124 (2011)
- Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA, Green Chem., 16, 1114 (2014)