Journal of Industrial and Engineering Chemistry, Vol.109, 453-460, May, 2022
Effect of catalyst layer designs for high-performance and durable anion-exchange membrane water electrolysis
E-mail:,
Development of anode design is crucial for highly efficient and durable anion-exchange membrane water electrolysis (AEMWE) as the kinetic of oxygen evolution reaction (OER) is sluggish. In this study, a macroporous catalyst layer (macroporous_CL) was proposed as an anode design for AEMWE to enhance the catalyst utilization. A macroporous_CL contains pores of two main size ranges: hundreds of nanometers and hundreds of micrometers. It is prepared using a spraying method to form nanometer-sized pores. The use of a stainless-steel (SUS) porous transport layer (PTL) as the substrate of the spraying method produces micrometer-sized macropores. In an investigation of the effects of the macroporous_CL and conventional catalyst layer (plain_CL) on AEMWE using two different kinds of oxygen evolution reaction (OER) catalysts, the macroporous_CL exhibited higher performance with lower ohmic and charge-transfer resistances compared to the plain_CL. This performance enhancement was attributed to the improved catalyst utilization and electron transport. Also, the macroporous_CL showed better durability compared to the plain_CL. Therefore, the macroporous_CL has been considered as an alternative anode design for AEMWE.
Keywords:Anion-exchange membrane water;electrolysis;Iridium oxide;Nickel iron alloy;Macroporous catalyst layer;Plain catalyst layer
- Zeng K, Zhang D, Prog. Energy Combust. Sci., 36, 307 (2010)
- David M, Ocampo-Martínez C, Sánchez-Peña R, J. Energy Storage, 23, 392 (2019)
- Carmo M, Fritz DL, Mergel J, Stolten D, Int. J. Hydrog. Energy, 38, 4901 (2013)
- Kumar SS, Himabindu V, Mater. Sci. Energy Technol., 2, 442 (2019)
- Vincent I, Bessarabov D, Renew. Sust. Energ. Rev., 81, 1690 (2018)
- Li C, Baek JB, Nano Energy, 87, 106162 (2021)
- Cho MK, Lim A, Lee SY, Kim HJ, Yoo SJ, Sung YE, Park HS, Jang JH, J. Electrochem. Sci. Technol., 8, 183 (2017)
- Lim A, Cho MK, Lee SY, Kim HJ, Yoo SJ, Sung YE, Jang JH, Park HS, J. Electrochem. Sci. Technol., 8, 265 (2017)
- Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M, Angew. Chem.-Int. Edit., 53, 1378 (2014)
- Vincent I, Kruger A, Bessarabov D, Int. J. Hydrog. Energy, 42, 10752 (2017)
- Cho MK, Park HY, Lee HJ, Kim HJ, Lim A, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH, J. Power Sources, 382, 22 (2018)
- Chang J, Lv Q, Li G, Ge J, Liu C, Xing W, Appl. Catal. B: Environ., 204, 486 (2017)
- Carbone A, Zignani SC, Gatto I, Trocino S, Arico AS, Int. J. Hydrog. Energy, 45, 9285 (2020)
- López-Fernández E, Gil-Rostra J, Espinós JP, González-Elipe AR, Yubero F, de Lucas-Consuegra A, J. Power Sources, 415, 136 (2019)
- López-Fernández E, Gil-Rostra J, Espinós JP, González-Elipe AR, de Lucas Consuegra A, Yubero F, ACS Catal., 10, 6159 (2020)
- Jeon SS, Lim J, Kang PW, Lee JW, Kang G, Lee H, ACS Appl. Mat. Inter., 13, 37179 (2021)
- Lee J, Jung H, Park YS, Kwon N, Woo S, Selvam NCS, Han GS, Jung HS, Yoo PJ, Choi SM, Han JW, Lim B, Appl. Catal. B: Environ., 294, 120246 (2021)
- Park JE, Kang SY, Oh SH, Kim JK, Lim MS, Ahn CY, Cho YH, Sung YE, Electrochim. Acta, 295, 99 (2019)
- Cha MS, Park JE, Kim S, Han SH, Shin SH, Yang SH, Kim TH, Yu DM, So S, Hong YT, Yoon SJ, Oh SG, Kang SY, Kim OH, Park HS, Bae B, Sung YE, Cho YH, Lee JY, Energy Environ. Sci., 13, 3633 (2020)
- Lister S, Epting WK, Wargo EA, Kalidindi SR, Kumbur EC, Fuel Cells, 13, 935 (2013)
- Malekian A, Salari S, Stumper J, Bahrami M, Int. J. Hydrog. Energy, 44, 23396 (2019)
- Salari S, Tam M, McCague C, Stumper J, Bahrami M, J. Power Sources, 449, 227479 (2020)
- Vincent I, Lee EC, Kim HM, Sci. Rep., 11, 293 (2021)
- Leng Y, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang CY, J. Am. Chem. Soc., 134, 9054 (2012)
- Fortin P, Khoza T, Cao X, Martinsen SY, Barnett AO, Holdcroft S, J. Power Sources, 451, 227814 (2020)
- Lim A, Kim HJ, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Sung YE, Jang JH, Park HS, J. Ind. Eng. Chem., 76, 410 (2019)
- Jang MJ, Yang J, Lee J, Park YS, Jeong J, Park SM, Jeong JY, Yin Y, Seo MH, Choi SM, Lee KH, J. Mater. Chem. A, 8, 4290 (2020)
- Park YS, Yang J, Lee J, Jang MJ, Jeong J, Choi WS, Kim Y, Yin Y, Seo MH, Chen Z, Choi SM, Appl. Catal. B: Environ., 278, 119276 (2020)
- Liu Z, Sajjad SD, Gao Y, Yang H, Kaczur JJ, Masel RI, Int. J. Hydrog. Energy
- Carbone A, Zignani SC, Gatto I, Trocino S, Aricò AS, Int. J. Hydrog. Energy, 45, 9285 (2020)
- Faid AY, Barnett AO, Seland F, Sunde S, ACS Appl. Energy Mater., 4, 3327 (2021)
- McCrory CCL, Jung S, Peters JC, Jaramillo TF, J. Am. Chem. Soc., 135, 16977 (2013)
- Park SA, Shim K, Kim KS, Moon YH, Kim YT, J. Electrochem. Sci. Technol., 10, 402 (2019)
- Park JE, Kim S, Kim OH, Ahn CY, Kim MJ, Kang SY, Jeon TI, Shim JG, Lee DW, Lee JH, Cho YH, Sung YE, Nano Energy, 58, 158 (2019)
- Pham CV, Bühler M, Knöppel J, Bierling M, Seeberger D, Escalera-López D, Mayrhofer KJJ, Cherevko S, Thiele S, Appl. Catal. B: Environ., 269, 118762 (2020)