화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.5, 590-599, October, 2001
기체유동층에서 슬러그특성 - 2. 슬러그 길이와 슬러그 상승속도
Slug Characteristics in Gas Fluidized Beds; 2. Slug Length and Slug Rising Velocity
E-mail:
초록
기체유동층에서 슬러그 길이와 슬러그 상승속도에 미치는 유속, 측정높이, 최소유동화상태의 층높이, 층직경 및 입자특성의 영향을 측정 및 고찰하였다. 슬러그 길이는 유속, 측정높이와 최소유동화상태의 층높이가 증가함에 따라 증가하였으나 층직경이 증가함에 따라 감소하였다. 슬러그 상승속도는 유속, 측정높이와 최소유동화상태의 층높이가 증가함에 따라 증가하였으며 측직경이 증가함에 따라 다소 증가하는 경향을 나타내었다. 동일한 과잉기체속도에서 슬러그 길이와 슬러그 상승속도는 Geldart 분류 A 및 AB 입자계에 속하는 FCC 입자의 경우보다 Geldart 분류 B 입자계에 속하는 모래입자의 경우가 크게 나타났다.
The effects of gas velocity, height from the distributor plate, bed height at minimum fluidization, column diameter and particle properties on vertical slug length and slug rising velocity were measured and discussed. The vertical slug length increased with increasing the gas velocity, height from the distributor plate and bed height at minimum fluidization, however, decreased with an increase of column diameter. The slug rising velocity also increased with increasing gas velocity, height from the distributor plate and bed height at minimum fluidization. The slug rising velocity increased slightly with column diameter. The vertical slug length and the slug rising velocity of sand were higher than that of FCC at the same excess gas velocity.
  1. Matsen JM, Tarmy BL, Chem. Eng. Prog. Symp. Ser., 66(1), 1 (1970)
  2. Hovmand S, Freedman W, Davidson JF, Trans. Inst. Chem. Eng., 49, 149 (1971)
  3. De Luca L, Di Felice R, Foscolo PU, Powder Technol., 69, 171 (1992) 
  4. Lee SH, Master Thesis, Korea Advanced Institute of Science and Technology, Taejeon, Korea (1997)
  5. Park WH, Kang WK, Capes CE, Osberg GL, Chem. Eng. Sci., 24, 851 (1969) 
  6. Nakamura K, Masaaki GHH, Katsuhiko H, Kag. Kog. Ronbunshu, 2(6), 577 (1976)
  7. Thiel WJ, Potter OE, Ind. Eng. Chem. Fundam., 16, 242 (1977) 
  8. Donsi G, Lancia A, Massimilla L, Volpicelli G, in "Fluidization IV," Kunii D. and Toei R., eds., Engineering Foundation, 347 (1983)
  9. Shichun C, Heling Z, Feichen J, in "Fluidization," Kwauk M. and Kunii D., eds., Elsevier, Amsterdam, 75 (1985)
  10. Lanneau KP, Trans. Inst. Chem. Eng., 38, 125 (1960)
  11. King DF, Harrison D, in "Fluidization," Grace, J.R. and Matsen, J.M., eds., Plenum Press, New York, 101 (1980)
  12. Hovmand S, Davidson JF, in "Fluidization," Davidson, J.F. and Harrison, D., eds., Academic Press, Yorkshire, 193 (1971)
  13. Nicklin DJ, Wilkes JO, Davidson JF, Trans. Inst. Chem. Eng., 40, 61 (1962)
  14. Ormiston RM, Mitchell FRG, Davidson JF, Trans. Inst. Chem. Eng., 43, T209 (1965)
  15. Matsen JM, Hovmand S, Davidson JF, Chem. Eng. Sci., 24(12), 1743 (1969) 
  16. Kehoe PWK, Davidson JF, Inst. Chem. Eng. Symp. Ser., No. 33, Butterworth-Heinemann, Australia, Melbourne, 97 (1971)
  17. Carotenuto L, Crescitelli S, Donsi G, Quad. Ing. Chim. Ital., 10(12), 185 (1974)
  18. Fan LT, Ho TC, Walawender WP, AIChE J., 29, 33 (1983) 
  19. Dry RJ, Judd MR, Shingles T, Powder Technol., 39, 69 (1984) 
  20. Satija S, Fan LS, AIChE J., 31, 1554 (1985) 
  21. Lee GS, Kim SD, Korean J. Chem. Eng., 6(1), 15 (1989)
  22. Clark NN, McKenzie EA, Gautam M, Powder Technol., 67, 187 (1991) 
  23. Ho TH, Yutani N, Fan LT, Walawender WP, Powder Technol., 35, 249 (1983) 
  24. Lee GS, Kim SD, Korean J. Chem. Eng., 6(4), 338 (1989)
  25. Ryu HJ, Choi JH, Yi CK, Shun DW, Son JE, Kim SD, HWAHAK KONGHAK, 37(3), 472 (1999)
  26. Baeyens J, Geldart D, Chem. Eng. Sci., 29, 255 (1974) 
  27. Noordergraaf IW, Van Dijk A, Van Den Bleek CM, Powder Technol., 52, 59 (1987)