화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.5, 772-777, October, 1998
유동층반응기에서 MeO/NMD를 이용한 저농도 연소가능 오염물의 제거
The Removal of Low Concentration Combusible Pollutant Gas Using MeO/NMD Catalysts in a Fluidized Bed Reactor
초록
저농도의 연소가능한 유기화합물을 제거하기위하여 천연망간광석(NMD:Natural Manganese Dioxide)을 기본으로 하여 Pt, Pd를 담지시킨 촉매를 사용하여 CH4, C 6H6,C2H5 OH, CO의 산화반응을 유동층반응기에서 여러 변수에 대해 실험을 수행하였다. 동일한 유속에서 입자크기의 영은 0.359mm의 경우가 좋은 효율을 보였으며 층내 기포분율과 반응물의 체류시간의 영향으로 유속이 작고 종횡비가 클수록 산화반응이 우수하였다. 또한 귀금속촉매를 NMD에 담지시킨 경우는 담지시키지 않은 경우보다 낮은 온도에서 유기화합물을 산화시켰고 메탄에 대해서는 PdO/NMD의 경우실험온도가 Pd의 구조적인 변화를 일으키는 온도이상이므로 NMD보다 산화능력이 떨어졌다
For the removal of combustible pollutant gas at low concentration, the experiment about oxidation of CH4, C6H6, C2H5OH, CO, was carried out using platinum, paladium- impregnated NMD (Natural Manganese Dioxide) in the fluidized bed reactor for several variables. At the same flow velocity the effect of particle size on conversion appeared most efficient in the size of 0.359mm. The xidation was excellent at low flow velocity and large aspect ratio because of the effect of residence time of reactant. Also the noble metal-impregnated catalyst oxidated VOCs at more low temperature than catalyst without impregnation. For methane oxidation ability of PdO/NMD decreased in the reason that experimental temperature was so high that the structural transformation was caused.
  1. McCabe RW, Mitchell PJ, Ind. Eng. Chem. Prod. Res. Dev., 23, 196 (1984) 
  2. Nagal M, Gonzalez RD, Ind. Eng. Chem. Prod. Res. Dev., 24, 525 (1985) 
  3. Lee JH, Trimm DL, Fuel Process. Technol., 42(2), 339 (1995) 
  4. Ahn T, Pinciewski WV, Trimm DL, Chem. Eng. Sci., 41, 55 (1986) 
  5. Hicks RF, Haihua Q, Michael LY, Raymond GL, J. Catal., 122, 295 (1990) 
  6. Imamura S, Sawada A, Uemura K, Ishida S, J. Catal., 109, 198 (1988) 
  7. Haruta M, Yamada N, Koobayashi T, Ijima S, J. Catal., 115, 301 (1989) 
  8. Serre C, Garin F, Belot G, Maire G, J. Catal., 141, 1 (1993) 
  9. Brittan MI, Bliss H, Walker CH, AIChE J., 16(2), 305 (1970) 
  10. Severino F, Laine J, Ind. Eng. Chem. Prod. Res. Dev., 22, 396 (1983) 
  11. Watanabe N, Yamashita H, Miyadera H, Tominaga S, Appl. Catal. B: Environ., 8(4), 405 (1996) 
  12. Gardner AD, Hoflund BG, Upchurch BT, Schryer DR, Kielin EF, Schryer J, J. Catal., 129, 114 (1991) 
  13. Park JS, Park YW, Oh KJ, Doh DS, HWAHAK KONGHAK, 17, 451 (1995)
  14. Jang HT, Cha WS, Doh DS, HWAHAK KONGHAK, 34(1), 64 (1996)
  15. Puncochar M, Drahos J, Cermak J, Selucky K, Chem. Eng. Commun., 35, 81 (1985)
  16. Geldart D, Powder Technol., 7, 285 (1973) 
  17. Botterill JSH, Teoman Y, Yuregir KR, Powder Technol., 31, 101 (1982) 
  18. Toomey RD, Johnstone HF, Chem. Eng. Prog., 48, 220 (1952)
  19. Davidson JF, Harrison D, "Fluidized Particles," Cambridge University Press (1963)
  20. Cullis CF, Willatt BM, J. Catal., 83, 267 (1983) 
  21. Imamura S, Tsuji Y, Miyake Y, Ito T, J. Catal., 151(2), 279 (1995)