화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.2, 188-193, April, 2004
폴리스티렌의 촉매 열분해 반응 특성
Characteristics of Catalytic Pyrolysis of Polystyrene
E-mail:
초록
폴리스티렌(polystyrene, PS)의 촉매 열분해 특성에 대해 고찰하였다. 가열온도를 323 K ~ 1073 K 범위 내에서 승온속도를 10 K/min, 20 K/min, 30 K/min, 40 K/min으로 각각 증가시키면서 질소분위기에서열중량분석기(thermogravimetric analyzer, TGA)를 이용하여 폴리스티렌을 열분해 하였는데, 촉매로는 BaO, Fe2O3 및 HZSM-5 (Si/Al = 30)을 사용하였다. 열분해 반응의 특성 비교에 중요한 요소인 반응차수 및 활성화 에너지를 구하기 위해 Kissinger, Freeman-Carroll, Chatterjee-Conrad, Friedman 및 Coats-Redfern 등의 방법을 사용하였으며, 각각의 방법에 따른 열분해 반응의 반응차수와 활성화 에너지 값을 구하여 비교 해석하였다. 본 연구의 결과, PS의 촉매 열분해 반응에서 반응차수는 0.5 ~ 1.0으로 얻을 수 있었으며, 활성화에너지는 세 촉매 중 HZSM-5 촉매를 사용한 경우 가장 많이 감소하였으며 Fe2O3와 BaO 촉매도 활성화에너지를 감소시켰다.
Thermal characteristics of catalytic pyrolysis of polystyrene (PS) were investigated. Polystyrene was decomposed in a thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10 K/min, 20 K/min, 30 K/min, or 40 K/min) within 323 ~ 1073 K range under the nitrogen atmosphere. The powder of BaO, Fe2O3 or HZSM-5 (Si/Al = 30) was used as a catalyst. Activation energy and reaction order of the catalytic pyrolysis of the PS were estimated by employing various methods, such as Kissinger, Freeman-Carroll, Chatterjee-Conrad, Friedman, or Coats-Redfern method. The analysis methods were evaluated with regard to their accuracy and ease of interpretation of the kinetics of catalytic thermal decomposition of PS. As a result of this study, it was found that the reaction order of catalytic pyrolysis of PS was 0.5 ~ 1.0. The addition of HZSM-5 was most effective to decrease the apparent activation energy of the pyrolysis of PS, and Fe2O3 or BaO could also decrease its activation energy.
  1. Kim SS, Chun BH, Park CJ, Yoon WL, Kim SH, HWAHAK KONGHAK, 38(5), 732 (2000)
  2. Lee CG, Cho YJ, Song PS, Kang Y, Kim JS, Choi MJ, Catal. Today, 79(1-4), 453 (2003) 
  3. Lee CG, Kim JS, Song PS, Cho YJ, Kang Y, Choi MJ, HWAHAK KONGHAK, 40(4), 445 (2002)
  4. Kim JS, Kim SJ, Yun JS, Kang Y, Choi MJ, HWAHAK KONGHAK, 39(4), 465 (2001)
  5. Woo OS, Broadbelt LJ, Catal. Today, 40(1), 121 (1998) 
  6. Westerhout RW, Waanders J, Kuipers JA, Vanswaaij WP, Ind. Eng. Chem. Res., 36(6), 1955 (1997) 
  7. Shun DW, Ghim YS, Cho SH, Son JE, J. Korean Solid Wastes Eng. Soc., 10, 195 (1993)
  8. Kim JS, Lee MY, Park JJ, Park HA, Lee SB, Nam SS, Lee KW, Choi MJ, Kang Y, Theor. Appl. Chem. Eng., 6, 4337 (2000)
  9. Carniti P, Gervasini A, Beltrame PL, Audisio G, Bertini F, Appl. Catal. A: Gen., 127(1-2), 139 (1995) 
  10. Zhang ZB, Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Okada M, Ind. Eng. Chem. Res., 34(12), 4514 (1995) 
  11. Kim SJ, Lee CG, Song PS, Yun JS, Kang Y, Kim JS, Choi MJ, J. Korean Ind. Eng. Chem., 14(5), 634 (2003)
  12. Kim MS, Oh SC, Lee HP, Kim HT, Yoo KO, J. Korean Ind. Eng. Chem., 10(4), 548 (1999)
  13. Freeman ES, Carroll J, J. Phys. Chem., 62, 394 (1958) 
  14. Chatterjee PK, Conrad CM, J. Polym. Sci. Part 1, 6, 3217 (1968) 
  15. Friedman HL, J. Polym. Sci. C: Polym. Lett., 6, 183 (1963)
  16. Bockhorn H, Knumann R, VDI-Ber., 1090, 423 (1993)
  17. Sato A, Kaneko K, J. Energy Heat Mass Transfer, 5, 323 (1983)
  18. Wu CH, Chang CY, Hor JL, Shih SM, Chen LW, Chang FW, Pyrolysis Kinet. Waste Manage., 13, 221 (1993)
  19. Hornung U, Bestimmung der Vergasungskinetik von Kunststoffen mit Hilfe eines Isotherm Betriebenen Kreislaufreaktors. Fortschritt-Berichte VDI, Reihe 3, Band 485, VDI-Verlag, Dusseldorf (1997)
  20. Kim KH, Chun SC, Ryu KO, J. Korean Solid Wastes Eng. Soc., 13, 504 (1996)
  21. Woo OS, Ayala N, Broadbelt LJ, Catal. Today, 55(1-2), 161 (2000)