Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.2, 188-193, April, 2004
폴리스티렌의 촉매 열분해 반응 특성
Characteristics of Catalytic Pyrolysis of Polystyrene
E-mail:
초록
폴리스티렌(polystyrene, PS)의 촉매 열분해 특성에 대해 고찰하였다. 가열온도를 323 K ~ 1073 K 범위 내에서 승온속도를 10 K/min, 20 K/min, 30 K/min, 40 K/min으로 각각 증가시키면서 질소분위기에서열중량분석기(thermogravimetric analyzer, TGA)를 이용하여 폴리스티렌을 열분해 하였는데, 촉매로는 BaO, Fe2O3 및 HZSM-5 (Si/Al = 30)을 사용하였다. 열분해 반응의 특성 비교에 중요한 요소인 반응차수 및 활성화 에너지를 구하기 위해 Kissinger, Freeman-Carroll, Chatterjee-Conrad, Friedman 및 Coats-Redfern 등의 방법을 사용하였으며, 각각의 방법에 따른 열분해 반응의 반응차수와 활성화 에너지 값을 구하여 비교 해석하였다. 본 연구의 결과, PS의 촉매 열분해 반응에서 반응차수는 0.5 ~ 1.0으로 얻을 수 있었으며, 활성화에너지는 세 촉매 중 HZSM-5 촉매를 사용한 경우 가장 많이 감소하였으며 Fe2O3와 BaO 촉매도 활성화에너지를 감소시켰다.
Thermal characteristics of catalytic pyrolysis of polystyrene (PS) were investigated. Polystyrene was decomposed in a thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10 K/min, 20 K/min, 30 K/min, or 40 K/min) within 323 ~ 1073 K range under the nitrogen atmosphere. The powder of BaO, Fe2O3 or HZSM-5 (Si/Al = 30) was used as a catalyst. Activation energy and reaction order of the catalytic pyrolysis of the PS were estimated by employing various methods, such as Kissinger, Freeman-Carroll, Chatterjee-Conrad, Friedman, or Coats-Redfern method. The analysis methods were evaluated with regard to their accuracy and ease of interpretation of the kinetics of catalytic thermal decomposition of PS. As a result of this study, it was found that the reaction order of catalytic pyrolysis of PS was 0.5 ~ 1.0. The addition of HZSM-5 was most effective to decrease the apparent activation energy of the pyrolysis of PS, and Fe2O3 or BaO could also decrease its activation energy.
- Kim SS, Chun BH, Park CJ, Yoon WL, Kim SH, HWAHAK KONGHAK, 38(5), 732 (2000)
- Lee CG, Cho YJ, Song PS, Kang Y, Kim JS, Choi MJ, Catal. Today, 79(1-4), 453 (2003)
- Lee CG, Kim JS, Song PS, Cho YJ, Kang Y, Choi MJ, HWAHAK KONGHAK, 40(4), 445 (2002)
- Kim JS, Kim SJ, Yun JS, Kang Y, Choi MJ, HWAHAK KONGHAK, 39(4), 465 (2001)
- Woo OS, Broadbelt LJ, Catal. Today, 40(1), 121 (1998)
- Westerhout RW, Waanders J, Kuipers JA, Vanswaaij WP, Ind. Eng. Chem. Res., 36(6), 1955 (1997)
- Shun DW, Ghim YS, Cho SH, Son JE, J. Korean Solid Wastes Eng. Soc., 10, 195 (1993)
- Kim JS, Lee MY, Park JJ, Park HA, Lee SB, Nam SS, Lee KW, Choi MJ, Kang Y, Theor. Appl. Chem. Eng., 6, 4337 (2000)
- Carniti P, Gervasini A, Beltrame PL, Audisio G, Bertini F, Appl. Catal. A: Gen., 127(1-2), 139 (1995)
- Zhang ZB, Hirose T, Nishio S, Morioka Y, Azuma N, Ueno A, Ohkita H, Okada M, Ind. Eng. Chem. Res., 34(12), 4514 (1995)
- Kim SJ, Lee CG, Song PS, Yun JS, Kang Y, Kim JS, Choi MJ, J. Korean Ind. Eng. Chem., 14(5), 634 (2003)
- Kim MS, Oh SC, Lee HP, Kim HT, Yoo KO, J. Korean Ind. Eng. Chem., 10(4), 548 (1999)
- Freeman ES, Carroll J, J. Phys. Chem., 62, 394 (1958)
- Chatterjee PK, Conrad CM, J. Polym. Sci. Part 1, 6, 3217 (1968)
- Friedman HL, J. Polym. Sci. C: Polym. Lett., 6, 183 (1963)
- Bockhorn H, Knumann R, VDI-Ber., 1090, 423 (1993)
- Sato A, Kaneko K, J. Energy Heat Mass Transfer, 5, 323 (1983)
- Wu CH, Chang CY, Hor JL, Shih SM, Chen LW, Chang FW, Pyrolysis Kinet. Waste Manage., 13, 221 (1993)
- Hornung U, Bestimmung der Vergasungskinetik von Kunststoffen mit Hilfe eines Isotherm Betriebenen Kreislaufreaktors. Fortschritt-Berichte VDI, Reihe 3, Band 485, VDI-Verlag, Dusseldorf (1997)
- Kim KH, Chun SC, Ryu KO, J. Korean Solid Wastes Eng. Soc., 13, 504 (1996)
- Woo OS, Ayala N, Broadbelt LJ, Catal. Today, 55(1-2), 161 (2000)