Chemical Engineering Science, Vol.61, No.9, 2852-2863, 2006
Development of a networks-of-zones fluid mixing model for an unbaffled stirred vessel used for precipitation
Reactive acid-alkali tracers have been deployed to capture the macromixing and partial segregation behaviour in an unbaffled stirred vessel. This configuration is often used in precipitators to avoid inadvertent solid accretions on vessel internals. The macromixing behaviour for semi-batch addition with visualisation of reactive (acid-alkali) tracers has been acquired via video images which are rendered visible using phenolphthalein as indicator. By means of visual reality modelling, in which computer graphics are used to reconstruct and closely mimic the experimentally visualised fluid mixing "scenes", the parameters for a networks-of-zones mixing model for the unbaffled semi-batch case have been established. The model can then be used for predicting precipitation behaviour for single-jet and other modes of operation. Some illustrative examples for barium sulphate, showing the underlying supersaturation fields in 3-D and the consequent time evolving particle size distributions, are presented and discussed for a single jet case. (c) 2005 Elsevier Ltd. All rights reserved.
Keywords:fluid mixing;chemical reactors;stirred vessel;batch;precipitation;particle size distribution