Korean Journal of Chemical Engineering, Vol.23, No.6, 888-895, November, 2006
Wire-mesh honeycomb catalysts for selective catalytic reduction of NO with NH3
E-mail:
Both flat and corrugated wire mesh sheets were coated with aluminum powder by using electrophoretic deposition (EPD) method. Controlled thermal sintering of coated samples yielded uniform porous aluminum layer with a thickness of 100 μm that was attached firmly on the wire meshes. Subsequent controlled calcination formed a finite thickness of Al2O3 layer on the outer surface of each deposited aluminum particles, which resulted in the formation of Al2O3/Al double-layered composite particles that were attached firmly on the wire surface to form a certain thickness of porous layer. A rectangular-shaped wire-mesh honeycomb (WMH) module with triangular-shaped channels was manufactured by packing alternately the flat sheet and corrugated sheet of the Al2O3/Al-coated wire meshes. This WMH was further coated with V2O5-MoO3-WO3 catalyst by wash-coating method to be applied for the selective catalytic reduction (SCR) of NO with NH3. With an optimized catalyst loading of 16 wt%, WMH catalyst module shows more than 90% NO conversion at 240 ℃ and almost complete NO conversion at temperatures higher than 300 ℃ at GHSV 5,000 h.1. When compared with conventional ceramic honeycomb catalyst, WMH catalyst gives NO conversion higher by 20% due to reduced mass transfer resistance by the existence of three dimensional opening holes in WMH.
- Ahlstromsilversand AF, Odenbrand CU, Appl. Catal. A: Gen., 153(1-2), 177 (1997)
- Amiridis MD, Duevel RV, Wachs IE, Appl. Catal. B: Environ., 20(2), 111 (1999)
- de Boer M, Huisman HM, Mos RJM, Leliveld RG, van Dillen AJ, Geus JW, Catal. Today, 17, 189 (1993)
- Bosch H, Janssen FJJG, van den Kerkhof FMG, Oldenziel J, van Ommen JG, Ross JRH, Appl. Catal., 25, 239 (1986)
- Chae HJ, Nam IS, Ham SW, Hong SB, Appl. Catal. B: Environ., 53(2), 117 (2004)
- Chen JP, Yang RT, J. Catal., 125, 411 (1990)
- Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91 (1996)
- Jung JH, Shon BH, Yoo KS, Kim HG, Lee HK, HWAHAK KONGHAK, 41(3), 403 (2003)
- Chung KS, Jiang ZD, Gill BS, Chung JS, Appl. Catal. A: Gen., 237(1-2), 81 (2002)
- Cybulski A, Moulijn JA, Structured catalysts and reactors, Marcel Dekker, Inc. (1998)
- Dutoit DC, Reiche MA, Baiker A, Appl. Catal. B: Environ., 13(3-4), 275 (1997)
- Handy BE, Baiker A, Schraml-Marth M, Wokaun A, J. Catal., 133, 1 (1992)
- Handy BE, Maciejewski M, Baiker A, J. Catal., 134, 75 (1992)
- Jiang ZD, Chung KS, Kim GR, Chung JS, Chem. Eng. Sci., 58(7), 1103 (2003)
- Kim BS, Lee SH, Park YT, Ham SW, Chae HJ, Nam IS, Korean J. Chem. Eng., 18(5), 704 (2001)
- Kim BT, Lee HG, Chun GS, Lee GJ, Park HS, HWAHAK KONGHAK, 25, 169 (1987)
- Kim GR, Jiang Z, Chung JS, Korean Patent 0336821 (2002)
- Lee IY, Kim DW, Lee JB, Yoo KO, Chem. Eng. J., 90(3), 267 (2002)
- Lee HT, Rhee HK, Korean J. Chem. Eng., 19(4), 574 (2002)
- Lee SH, Ahn JS, Kim JH, News Inf. Chem. Eng., 19, 468 (2001)
- Lintz HG, Turek T, Appl. Catal. A: Gen., 85, 13 (1992)
- Tian LQ, Ye DQ, Liang H, Catal. Today, 78(1-4), 159 (2003)
- Long RQ, Yang RT, J. Catal., 196(1), 73 (2000)
- Lucas D, Brown NJ, Combust. Flame, 47, 219 (1982)
- Park JH, Kim DJ, Kim KS, HWAHAK KONGHAK, 40(3), 351 (2002)
- Piehl G, Liese T, Grunert W, Catal. Today, 54(4), 401 (1999)
- Rajadhyaksha RA, Hausinger G, Ramstetter HZ, Knozinger HS, Appl. Catal., 51, 67 (1989)
- Topsoe NY, Topsoe H, Dumesic JA, J. Catal., 151(1), 226 (1995)
- Weng RY, Lee JF, Appl. Catal. A: Gen., 105, 41 (1993)
- Went GT, Leu LJ, Rosin RR, Bell AT, J. Catal., 134, 492 (1992)
- Yang KS, Choi JS, Chung JS, Catal. Today, 97(2-3), 159 (2004)
- Yang KS, Jiang Z, Chung JS, Surf. Coat. Technol., 168, 103 (2003)
- Yoo KS, Lee JG, Park DK, Jeong MJ, Lee C, Shin JW, HWAHAK KONGHAK, 41(2), 219 (2003)