화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.6, 888-895, November, 2006
Wire-mesh honeycomb catalysts for selective catalytic reduction of NO with NH3
E-mail:
Both flat and corrugated wire mesh sheets were coated with aluminum powder by using electrophoretic deposition (EPD) method. Controlled thermal sintering of coated samples yielded uniform porous aluminum layer with a thickness of 100 μm that was attached firmly on the wire meshes. Subsequent controlled calcination formed a finite thickness of Al2O3 layer on the outer surface of each deposited aluminum particles, which resulted in the formation of Al2O3/Al double-layered composite particles that were attached firmly on the wire surface to form a certain thickness of porous layer. A rectangular-shaped wire-mesh honeycomb (WMH) module with triangular-shaped channels was manufactured by packing alternately the flat sheet and corrugated sheet of the Al2O3/Al-coated wire meshes. This WMH was further coated with V2O5-MoO3-WO3 catalyst by wash-coating method to be applied for the selective catalytic reduction (SCR) of NO with NH3. With an optimized catalyst loading of 16 wt%, WMH catalyst module shows more than 90% NO conversion at 240 ℃ and almost complete NO conversion at temperatures higher than 300 ℃ at GHSV 5,000 h.1. When compared with conventional ceramic honeycomb catalyst, WMH catalyst gives NO conversion higher by 20% due to reduced mass transfer resistance by the existence of three dimensional opening holes in WMH.
  1. Ahlstromsilversand AF, Odenbrand CU, Appl. Catal. A: Gen., 153(1-2), 177 (1997)
  2. Amiridis MD, Duevel RV, Wachs IE, Appl. Catal. B: Environ., 20(2), 111 (1999)
  3. de Boer M, Huisman HM, Mos RJM, Leliveld RG, van Dillen AJ, Geus JW, Catal. Today, 17, 189 (1993)
  4. Bosch H, Janssen FJJG, van den Kerkhof FMG, Oldenziel J, van Ommen JG, Ross JRH, Appl. Catal., 25, 239 (1986) 
  5. Chae HJ, Nam IS, Ham SW, Hong SB, Appl. Catal. B: Environ., 53(2), 117 (2004)
  6. Chen JP, Yang RT, J. Catal., 125, 411 (1990)
  7. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91 (1996)
  8. Jung JH, Shon BH, Yoo KS, Kim HG, Lee HK, HWAHAK KONGHAK, 41(3), 403 (2003)
  9. Chung KS, Jiang ZD, Gill BS, Chung JS, Appl. Catal. A: Gen., 237(1-2), 81 (2002)
  10. Cybulski A, Moulijn JA, Structured catalysts and reactors, Marcel Dekker, Inc. (1998)
  11. Dutoit DC, Reiche MA, Baiker A, Appl. Catal. B: Environ., 13(3-4), 275 (1997)
  12. Handy BE, Baiker A, Schraml-Marth M, Wokaun A, J. Catal., 133, 1 (1992)
  13. Handy BE, Maciejewski M, Baiker A, J. Catal., 134, 75 (1992)
  14. Jiang ZD, Chung KS, Kim GR, Chung JS, Chem. Eng. Sci., 58(7), 1103 (2003)
  15. Kim BS, Lee SH, Park YT, Ham SW, Chae HJ, Nam IS, Korean J. Chem. Eng., 18(5), 704 (2001)
  16. Kim BT, Lee HG, Chun GS, Lee GJ, Park HS, HWAHAK KONGHAK, 25, 169 (1987)
  17. Kim GR, Jiang Z, Chung JS, Korean Patent 0336821 (2002)
  18. Lee IY, Kim DW, Lee JB, Yoo KO, Chem. Eng. J., 90(3), 267 (2002)
  19. Lee HT, Rhee HK, Korean J. Chem. Eng., 19(4), 574 (2002)
  20. Lee SH, Ahn JS, Kim JH, News Inf. Chem. Eng., 19, 468 (2001)
  21. Lintz HG, Turek T, Appl. Catal. A: Gen., 85, 13 (1992)
  22. Tian LQ, Ye DQ, Liang H, Catal. Today, 78(1-4), 159 (2003)
  23. Long RQ, Yang RT, J. Catal., 196(1), 73 (2000)
  24. Lucas D, Brown NJ, Combust. Flame, 47, 219 (1982)
  25. Park JH, Kim DJ, Kim KS, HWAHAK KONGHAK, 40(3), 351 (2002)
  26. Piehl G, Liese T, Grunert W, Catal. Today, 54(4), 401 (1999)
  27. Rajadhyaksha RA, Hausinger G, Ramstetter HZ, Knozinger HS, Appl. Catal., 51, 67 (1989) 
  28. Topsoe NY, Topsoe H, Dumesic JA, J. Catal., 151(1), 226 (1995)
  29. Weng RY, Lee JF, Appl. Catal. A: Gen., 105, 41 (1993)
  30. Went GT, Leu LJ, Rosin RR, Bell AT, J. Catal., 134, 492 (1992)
  31. Yang KS, Choi JS, Chung JS, Catal. Today, 97(2-3), 159 (2004)
  32. Yang KS, Jiang Z, Chung JS, Surf. Coat. Technol., 168, 103 (2003)
  33. Yoo KS, Lee JG, Park DK, Jeong MJ, Lee C, Shin JW, HWAHAK KONGHAK, 41(2), 219 (2003)