화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.2, 554-559, March, 2009
Kinetic analysis of NO-Char reaction
E-mail:
Two Chinese coals were used to prepare chars in a flat flame flow reactor which can simulate the temperature and gas composition of a real pulverized coal combustion environment. Acid treatment on the YB and SH chars was applied to obtain demineralized chars. Kinetic characterization of NO-char reaction was performed by isothermal thermogravimetry in the temperature range of 973-1,573 K. Presence of catalytic metal matter can increase the reactivity of chars with NO, which indicates that the catalytic effects of inherent mineral matter play a significant role in the NO-char reaction. The discrete random pore model was applied to describe the NO-char reactions and obtain the intrinsic kinetics. The model can predict the data for all the chars at various temperatures well, but underestimate the reaction rates at high carbon conversions for the raw YB and SH chars, which can be attributed to the accumulation of metal catalyst on char surface.
  1. Kang M, Park JH, Choi JS, Park ED, Yie JE, Korean J. Chem. Eng., 24(1), 191 (2007)
  2. Qiu P, Wu S, Sun S, Liu H, Yang L, Wang G, Korean J. Chem. Eng., 24(4), 683 (2007)
  3. Li T, Zhuo Y, Lei J, Xu X, Korean J. Chem. Eng., 24(6), 1113 (2007)
  4. Zhang Y, Ding Y, Wu Z, Kong L, Chou T, Korean J. Chem. Eng., 24(6), 1118 (2007)
  5. Li ZQ, Chen ZC, Sun R, Wu SH, J. Energy Institute, 80, 123 (2007)
  6. Li ZQ, Jing JP, Chen ZC, Ren F, Xu B, Wei HD, Ge ZH, Combust. Sci. Technol., 180, 1370 (2008)
  7. Cances J, Commandre JM, Salvador S, Dagaut P, Fuel, 87, 274 (2008)
  8. Teng H, Suuberg EM, Calo JM, Energy & Fuels, 6, 398 (1992)
  9. Li YH, Radovic LR, Lu GQ, Rudolph V, Chem. Eng. Sci., 54(19), 4125 (1999)
  10. Wang SB, Slovak V, Haynes BS, Fuel Process. Technol., 86(6), 651 (2005)
  11. Lopez D, Calo J, Energy Fuels, 21(4), 1872 (2007)
  12. Song YH, Beer JM, Sarofim AF, Combust. Sci. Technol., 25, 237 (1981)
  13. Levy JM, Chan LK, Sarofim AF, Beer JM, Eighteenth symposium (international) on combustion, the combustion institute, 111 (1980)
  14. Schonenbeck C, Gadiou R, Schwartz D, Fuel, 83, 443 (2004)
  15. Aarna I, Suuberg EM, Fuel, 76(6), 475 (1997)
  16. Radovic LR, Walker Jr. PL, Jenkins RG, Fuel, 62, 843 (1983)
  17. Lizzio AA, Jiang H, Liubisa LR, Carbon, 28, 7 (1990)
  18. Zeng D, Clark M, Gunderson T, Hecker WC, Fletcher TH, Proceedings of the combustion institute, 30, 2213 (2005)
  19. Fletcher TH, Ma JL, Rigby JR, Brown AL, Webb BW, Prog. Energy Combust. Sci., 23, 293 (1997)
  20. Weigand P, Luckerath R, Meier W, Institute of Combustion Technology, www.dlr.de/VT/Datenarchiv
  21. Bale HD, Catlson ML, Schobert HH, Fuel, 65, 1185 (1986)
  22. Mahajan OP, Yarzab RY, Walker PL, Fuel, 57, 643 (1978)
  23. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
  24. Raghunathan K, Yang RYK, Ind. Eng. Chem. Res., 28, 518 (1989)
  25. Radovic LR, Jiang H, Lizzio AA, Energy & Fuels, 5, 68 (1991)
  26. Ng SH, Fung DP, Kim S, Fuel, 67, 700 (1988)
  27. Commandre JM, Stanmore BR, Salvador S, Combust. Flame, 128(3), 211 (2002)
  28. Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 10(1), 158 (1996)
  29. Salvador S, Commandre JM, Stanmore BR, Gadiou R, Energy Fuels, 18(2), 296 (2004)
  30. Bhatia SK, Perlmutter DD, AIChE J., 26, 379 (1980)
  31. Su JL, Perlmutter DD, AIChE J., 31, 973 (1985)
  32. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
  33. Bhatia SK, Vartak BJ, Carbon, 34, 1383 (1996)
  34. Hamilton R, Sams T, Shadman DA, Fuel, 63, 1043 (1984)
  35. Struis RPWJ, von Scala C, Stucki S, Prins R, Chem. Eng. Sci., 57(17), 3581 (2002)
  36. Struis RPWJ, von Scala C, Stucki S, Prins R, Chem. Eng. Sci., 57(17), 3593 (2002)
  37. Moulijin JA, Kapteijin F, Carbon, 33, 1155 (1995)