화학공학소재연구정보센터
Clean Technology, Vol.16, No.1, 19-25, March, 2010
활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환
Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon
E-mail:
초록
결정성의 셀룰로우스를 수소분위기하에서 다양한 귀금속 촉매를 이용하여 폴리올로 전환시키는 연구를 수행하였다. 촉매는 단일 귀금속(Pt, Ru, Ir, Rh, Pd)을 활성탄에 습식함침법으로 담지시켜서 제조하였으며, Pt/γ-Al2O3와 Pt/H-mordenite를 비교촉매로 사용하였다. 생성물은 고압액체크로마토그래피로 분석하였다. 촉매는 질소흡착, X-선 회절법, 유도결합플라즈마분광법(ICP-AES), 수소-승원환원분석 (H2-TPR), 그리고 일산화탄소 화학흡착을 통하여 분석하였다. 셀룰로우스의 전환율은 사용한 촉매와 연관관계가 낮은 것으로 나타났으며 활성탄에 담지된 귀금속 촉매중에서 Pt/AC가 높은 폴리올의 수득률에 바람직한 것으로 조사되었다.
In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/γ-Al2O3 and Pt/H-mordenite were also investigated. Several techniques: N2 physisorption, X-ray diffraction (XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with H2 (H2-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.
  1. Rinaldi R, Schuth F, Energ. Environ. Sci., 2, 610 (2009)
  2. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  3. Dhepe PL, Fukuoka A, Chem. Sus. Chem., 1, 969 (2008)
  4. Klemm D, Heublein B, Fink HP, Bohn A, Angew. Chem. Int. Ed., 44, 3358 (2005)
  5. Dhepe PL, Fukuoka A, Catal. Surv. Asia., 11, 186 (2007)
  6. Fukuoka A, Dhepe PL, Chem. Rec., 9, 224 (2009)
  7. Mamleev V, Bourbigot S, Bras ML, Yvon J, J. Anal. Appl. Pyrol., 84, 1 (2009)
  8. Kamm B, Angew. Chem. Int. Ed., 46, 5056 (2007)
  9. Onda A, Ochi T, Yanagisawa K, Green. Chem., 10, 1033 (2008)
  10. Cortright RD, Davda RR, Dumesic JA, Nature, 418, 964 (2002)
  11. Huber GW, Shabaker JW, Dumesic JA, Science, 300, 2075 (2003)
  12. Simonetti DA, Rass-Hansen J, Kunkes EL, Soares RR, Dumesic JA, Green Chem., 9, 1073 (2007)
  13. Huber GW, Chheda JN, Barrett CJ, Dumesic JA, Science, 308, 1446 (2005)
  14. Fukuoka A, Dhepe PL, Angew. Chem. Int. Ed., 45, 5161 (2006)
  15. Luo C, Wang S, Liu H, Angew. Chem. Int. Ed., 46, 7636 (2007)
  16. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem. Int., 47, 8510 (2008)
  17. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG, Catalysis Today, 147, 77 (2009)
  18. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T, Chem. Sus. Chem., 3, 63 (2010)
  19. Zhang Y, Wang A, Zhang T, Chem. Commun., 46, 862 (2010)
  20. Deng WP, Tan XS, Fang WH, Zhang QH, Wang Y, Catal. Lett., 133(1-2), 167 (2009)
  21. Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA, Chem. Sus. Chem., 3, 67 (2010)
  22. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883 (2000)
  23. Sasaki M, Adschiri T, Arai K, AIChE J., 50(1), 192 (2004)
  24. Nolen SA, Liotta CL, Eckert CA, Glaser R, Green. Chem., 5, 663 (2003)
  25. Auer E, Freund A, Pietsch J, Tacke T, Appl. Catal. A: Gen., 173(2), 259 (1998)