화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.3, 332-336, June, 2010
고정화된 이온성 액체 촉매를 이용한 디메틸카보네이트 합성 반응에 대한 속도론적 고찰
A Kinetic Study on the Synthesis of Dimethylcarbonate by Using Immobilized Ionic Liquid Catalyst
E-mail:
초록
이미다졸염 형태의 이온성 액체를 구조유도체를 사용하지 않고 솔-젤 법으로 무정형 실리카에 담지시켜 고정화된 이온성 액체 촉매를 제조하였다. 이 촉매를 에틸렌카보네이트와 메탄올과의 에스테르 교환반응에 의한 디메틸카보네이트(DMC)의 합성 반응에 사용한 결과 우수한 촉매 활성을 나타내었다. DMC 합성 반응을 두 단계의 반응식으로 가정한 모델을 설정하여 반응온도와 촉매량을 변화시켜 실험한 결과와 비교한 속도론적 연구에서 실험 결과가 반응모델에 잘 일치하는 것을 알 수 있었다. 이로부터 계산한 유사 활성화 에너지 값은 67.4 kJ/mol 이었다.
Ionic liquid immobilized on mesoporous amorphous silica was prepared from the coupling of 1-(triethoxysilylpropyl)-3-n-alkyl-imidzolium halides with tetraethyl orthosilicate(TEOS) through template-free condensation under strong acidic conditions. The immobilized 1-n-butyl-3-methyl imidazolium bromide ionic liquid on amorphous silica(BMImBr-AS) was proved to be an effective heterogeneous catalyst for the synthesis of dimethyl carbonate(DMC) from transesterification of ethylene carbonate(EC) with methanol. High temperature, high carbon dioxide pressure and long reaction time were favorable for the reactivity of BMImBr-AS. Kinetic studies based on two step reactions revealed that the proposed reaction model fitted well the experimental data. The apparent activation energy was estimated to be 67.4 kJ/mol.
  1. Romano U, Chim. Ind., 75, 303 (1993)
  2. Uchiumi S, Ataka K, Matsuzaki T, J. Organomet. Chem., 576, 279 (1999)
  3. Cui HY, Wang T, Wang FJ, Gu CR, Wang PL, Dai YY, Ind. Eng. Chem. Res., 42(17), 3865 (2003)
  4. Bhanage BM, Fujita SI, Ikushima Y, Torii K, Arai M, Green Chem., 5, 71 (2003)
  5. Romano U, Melis U, US Patent, 4062884 (1977)
  6. Han MS, Lee BG, Ahn BS, Park KY, Hong SI, React. Kinet. Catal. Lett., 73(1), 33 (2001)
  7. Kondoh T, Okada Y, Tanaka F, Asaoka S, Yamanoto S, US Patent, 5436362 (1995)
  8. Tatsumi T, Watanabe Y, Koyano KA, Chem. Commun., 2281 (1996)
  9. Urano Y, Kirishiki M, Onda Y, Tsuneki H, US Patent, 5430170 (1995)
  10. Watanabe Y, Tatsumi T, Micropor. Mesopor. Mater., 22, 399 (1998)
  11. Sheldon R, Chem. Commun., 2399 (2001)
  12. Zhao DB, Wu M, Kou Y, Min E, Catal. Today, 74(1-2), 157 (2002)
  13. Wasserscheid P, Keim W, Angew. Chem. Int. Ed., 39, 3772 (2000)
  14. Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667 (2002)
  15. Marsh KN, Deev A, Wu ACT, Tran E, Klamt A, Korean J. Chem. Eng., 19(3), 357 (2002)
  16. Song CE, Shim WH, Roh EJ, Choi JH, Chem. Commun., 1695 (2000)
  17. Mun NY, Kim KH, Park DW, Choe Y, Kim I, Korean J. Chem. Eng., 22(4), 556 (2005)
  18. Lee EH, Cha SW, Dharma MM, Choe Y, Ahn JY, Park DW, Korean J. Chem. Eng., 24(3), 547 (2007)
  19. Manju MD, Ahn JY, Lee MK, Shim HL, Kim KH, Kim I, Park DW, Green Chem., 10, 678 (2008)
  20. Udayakumar S, Raman V, Shim HL, Park DW, Appl. Catal. A: Gen., 368(1-2), 97 (2009)
  21. Yoshitake H, Koiso E, Horie H, Yoshimura H, Micropor. Mesopor. Mater., 85, 183 (2005)
  22. Fang YJ, Xiao WD, Sep. Purif. Technol., 34(1-3), 255 (2004)
  23. Feng XJ, Li XG, He R, Zhou H, Chinese Chem. Lett., 16, 767 (2005)