Korean Journal of Chemical Engineering, Vol.28, No.2, 348-356, February, 2011
Study of the structural characteristics of a divided wall column using the sloppy distillation arrangement
E-mail:
An efficient design method is proposed for determining the optimal design structure of a dividing wall column (DWC). The internal section of the DWC is divided into four separate sections and matched to the sloppy arrangement with three conventional simple columns. The light and heavy key component mole-fractions are used as the design variables in each column. The structure that gives superior energy efficiency in the shortcut sloppy case also brings superior energy efficiency in the DWC, while the optimal internal flow distribution of the DWC is different from that obtained from the sloppy configuration. Based upon an extensive simulation study, a two-step approach is proposed for the DWC design: the optimal DWC structure is first determined by applying the shortcut method to the sloppy configuration; the optimal internal flow distribution is then found from the corresponding DWC configuration. The simulation study shows that the DWC designed by the proposed method gives a near-optimal structure.
Keywords:Divided Wall Column;Thermally Coupled Distillation Column;Optimal Structure Design;Energy Efficiency;Shortcut Design Method
- YOO KP, LEE KS, LEE WH, PARK HS, Korean J. Chem. Eng., 5(2), 123 (1988)
- ZAKI ML, YOON ES, Korean J. Chem. Eng., 6(3), 185 (1989)
- Amminudin KA, Smith R, Trans. Inst. Chem. Eng., Part A, 79, 716 (2001)
- Kim YH, Korean J. Chem. Eng., 17(5), 570 (2000)
- Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 605 (2003)
- Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994 (2004)
- Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383 (2002)
- Kim YH, Chem. Eng. J., 85(2-3), 289 (2002)
- Phipps MA, Hoadley AFA, Korean J. Chem. Eng., 20(4), 642 (2003)
- Nikolaides IP, Malone MF, Ind. Eng. Chem. Res., 27, 811 (1988)
- Querzoli AL, Hoadley AFA, Dyson TES, Korean J. Chem. Eng., 20(4), 635 (2003)
- Agrawal R, Trans. Inst. Chem. Eng., PartA, 78, 454 (2000)
- Kim YH, Choi DW, Hwang KS, Korean J. Chem. Eng., 20(4), 755 (2003)
- Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098 (2004)
- Segovia-Hernandez JG, Bonilla-Petriciolet A, Salcedo-Estrada LI, Korean J. Chem. Eng., 23(5), 689 (2006)
- Lee MY, Kim YH, Korean Chem. Eng. Res., 46(5), 1017 (2008)
- Lee MY, Jeong SY, Kim YH, Korean J. Chem. Eng., 25(6), 1245 (2008)
- Lee MY, Choi DW, Kim YH, Korean J. Chem. Eng., 26(3), 631 (2009)
- Hwang KS, Sung IG, Kim YH, Korean Chem. Eng. Res., 47(3), 327 (2009)
- Triantafyllou C, Smith R, Trans. Inst. Chem. Eng., Part A, 70, 118 (1992)
- Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng., 85, 289 (2002)
- Agrawal R, Fidkowski ZT, AIChE J., 45(3), 485 (1999)
- Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47 (2009)
- Fenske MR, Ind. Eng. Chem., 32 (1932)
- Gilliland ER, Ind. Eng. Chem., 32, 1220 (1940)
- Fenske MR, Ind. Eng. Chem., 24, 482 (1932)
- Underwood AJ, Chem. Eng. Progress., 44, 603 (1948)
- Tedder DW, Rudd DF, AIChE J., 24, 303 (1978)
- Jimenez A, Ramirez N, Castro A, Hernandez S, Trans. Inst.Chem. Eng., 81(A5), 518 (2003)
- Wolff EA, Skogestad S, Ind. Eng. Chem. Res., 34(6), 2094 (1995)
- Halvorsen IJ, Skogestad S, J. Process Control, 9(5), 407 (1999)
- Abdul Mutalib MI, Zeglam AO, Smith R, Trans. Inst. Chem.Eng., 76(A3), 308 (1998)