화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.3, 349-355, March, 2012
Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells
E-mail:
Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650-800℃). LSCF with a high surface area of 55 m2g^(-1) is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5m2g^(-1). The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50 : 50 wt%) as an anode functional layer, and Ni-YSZ (50 : 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60 : 40 wt%), 5LSCF-5GDC (50 : 50 wt%), and 4LSCF-6GDC (40 : 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm^(-2), 0.97 Wcm^(-2), and 0.47Wcm^(-2) at 780 ℃, 730 ℃, and 680 ℃, respectively. The 6LSCF-4GDC shows 0.92 Wcm^(-2), 0.71 Wcm^(-2), and 0.54Wcm^(-2) at 780 ℃, 730 ℃, and 680 ℃, respectively. At 780 ℃, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 ℃ the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF(55m2g^(-1)) and GDC (5 m2g^(-1)) needs to be considered with a function of temperature.
  1. Dusastre V, Kilner JA, Solid State Ion., 126(1-2), 163 (1999)
  2. Kus¡s¡cer D, Holc J, Hrovat S, Kolar D, J. Eur. Ceram. Soc., 21, 1817 (2001)
  3. Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stover D, Solid State Ion., 176(15-16), 1341 (2005)
  4. Mai A, Haanappel VAC, Tietz F, Stover D, Solid State Ion., 177(19-25), 2103 (2006)
  5. Teraoka Y, Zhang HM, Okamoto K, Yamazoe N, Mater. Res.Bull., 23, 51 (1988)
  6. Fleig J, J. Power Sources, 105(2), 228 (2002)
  7. Hwang JW, Lee JY, Jo DH, Jung HW, Kim SH, Korean J. Chem. Eng., 28(1), 143 (2011)
  8. Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216 (2005)
  9. Adler SB, Lane JA, Steele BC, J. Electrochem. Soc., 143(11), 3554 (1996)
  10. Kilner JA, Desouza RA, Fullarton IC, Solid State Ion., 86-88, 703 (1996)
  11. Fleig J, Annu. Rev. Mater. Res., 33, 361 (2003)
  12. Srdic VV, Omorjan RP, Seidel J, Mater. Sci. Eng. B., 116, 119 (2005)
  13. Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27 (2002)
  14. Gunasekaran N, Saddawi S, Carberry JJ, J. Catal., 159(1), 107 (1996)
  15. Liu YA, Zheng HT, Liu JR, Zhang T, Chem. Eng. J., 89(1-3), 213 (2002)
  16. Dutta A, Mukhopadhyay J, Basu RN, J. Eur. Ceram. Soc., 29, 2003 (2009)
  17. Shukla S, Seal S, Vij R, Bandyopadhyay S, Nano Lett., 3, 397 (2003)
  18. Kim JH, Park YM, Kim H, J. Power Sources, 196(7), 3544 (2011)
  19. Leng Y, Chan S, Liu Q, Int. J. Hydrog. Energy., 33, 3808 (2008)
  20. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69 (1999)
  21. Schichlein H, Muller AC, Voigts M, Krugel A, Ivers-Tiffee E, J. Appl. Electrochem., 32(8), 875 (2002)
  22. Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155(1), B36 (2008)
  23. Park YM, Kim JH, Kim H, Int. J. Hydrog. Energy., 36, 5617 (2011)