Korean Journal of Chemical Engineering, Vol.29, No.3, 349-355, March, 2012
Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells
E-mail:
Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650-800℃). LSCF with a high surface area of 55 m2g^(-1) is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5m2g^(-1). The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50 : 50 wt%) as an anode functional layer, and Ni-YSZ (50 : 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60 : 40 wt%), 5LSCF-5GDC (50 : 50 wt%), and 4LSCF-6GDC (40 : 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm^(-2), 0.97 Wcm^(-2), and 0.47Wcm^(-2) at 780 ℃, 730 ℃, and 680 ℃, respectively. The 6LSCF-4GDC shows 0.92 Wcm^(-2), 0.71 Wcm^(-2), and 0.54Wcm^(-2) at 780 ℃, 730 ℃, and 680 ℃, respectively. At 780 ℃, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 ℃ the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF(55m2g^(-1)) and GDC (5 m2g^(-1)) needs to be considered with a function of temperature.
Keywords:Solid Oxide Fuel Cell;Mixed Conductor;Nano Dispersant;Anode Supported Cell;Composite Cathode
- Dusastre V, Kilner JA, Solid State Ion., 126(1-2), 163 (1999)
- Kus¡s¡cer D, Holc J, Hrovat S, Kolar D, J. Eur. Ceram. Soc., 21, 1817 (2001)
- Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stover D, Solid State Ion., 176(15-16), 1341 (2005)
- Mai A, Haanappel VAC, Tietz F, Stover D, Solid State Ion., 177(19-25), 2103 (2006)
- Teraoka Y, Zhang HM, Okamoto K, Yamazoe N, Mater. Res.Bull., 23, 51 (1988)
- Fleig J, J. Power Sources, 105(2), 228 (2002)
- Hwang JW, Lee JY, Jo DH, Jung HW, Kim SH, Korean J. Chem. Eng., 28(1), 143 (2011)
- Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216 (2005)
- Adler SB, Lane JA, Steele BC, J. Electrochem. Soc., 143(11), 3554 (1996)
- Kilner JA, Desouza RA, Fullarton IC, Solid State Ion., 86-88, 703 (1996)
- Fleig J, Annu. Rev. Mater. Res., 33, 361 (2003)
- Srdic VV, Omorjan RP, Seidel J, Mater. Sci. Eng. B., 116, 119 (2005)
- Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27 (2002)
- Gunasekaran N, Saddawi S, Carberry JJ, J. Catal., 159(1), 107 (1996)
- Liu YA, Zheng HT, Liu JR, Zhang T, Chem. Eng. J., 89(1-3), 213 (2002)
- Dutta A, Mukhopadhyay J, Basu RN, J. Eur. Ceram. Soc., 29, 2003 (2009)
- Shukla S, Seal S, Vij R, Bandyopadhyay S, Nano Lett., 3, 397 (2003)
- Kim JH, Park YM, Kim H, J. Power Sources, 196(7), 3544 (2011)
- Leng Y, Chan S, Liu Q, Int. J. Hydrog. Energy., 33, 3808 (2008)
- Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69 (1999)
- Schichlein H, Muller AC, Voigts M, Krugel A, Ivers-Tiffee E, J. Appl. Electrochem., 32(8), 875 (2002)
- Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155(1), B36 (2008)
- Park YM, Kim JH, Kim H, Int. J. Hydrog. Energy., 36, 5617 (2011)