Korean Chemical Engineering Research, Vol.49, No.6, 732-738, December, 2011
고압반응 하에서 요소와 메탄올을 사용한 메틸카바메이트와 디메틸카보네이트 제조에 관한 금속산화물 촉매 및 이온성액체의 영향
Effect of Metal Oxide Catalysts and Ionic Liquids on the Synthesis of Methyl Carbamate and Dimethyl Carbonate from Urea and Methanol under High Pressure Reaction System
E-mail:
초록
고압 반응시스템에서 요소와 메탄올로부터 메틸카바메이트(MC) 및 디메틸카보네이트(DMC)의 제조에 관한 금속 산화물촉매와 이온성액체의 영향을 고찰하였다. 고립계에서 요소와 메탄올로부터 MC 수율은 촉매를 사용하지 않고도 150 ℃ 이상의 반응온도에서 거의 100%를 나타내었으나, DMC 수율은 반응온도와 무관하게 1.5% 이하로 매우 낮은 값을 나타내었다. 또한 MC와 메탄올로부터 DMC 수율은 ZnCl2 촉매를 사용한 경우에 가장 우수하였으며, 최적조건에서 16.3% 정도를 나타내었다. DMC 수율은 반연속식 실험에서 나노 크기의 촉매와 이온성액체를 함께 적용한 경우에 좀 더 향상되었다.
Effect of metal oxide catalysts and ionic liquids on the synthesis of methyl carbamate(MC) and dimethyl carbonate (DMC) from urea and methanol was investigated in a high pressure reaction system. In closed system, MC yield from urea and methanol reached almost 100% at reaction temperature over 150 ℃ without catalyst, whereas DMC yield of 1.5% under was obtained irrespective of catalysts used. In DMC synthesis from MC and methanol, ZnCl2 showed the highest catalytic activity and led to the DMC yield of 16.3% under optimal conditions. Furthermore, DMC yield can be enhanced by the simultaneous application of ionic liquids with nano-sized catalysts in semi-continuous reaction system.
- Sun JJ, Yang BL, Lin HY, Chem. Eng. Technol., 27(4), 435 (2004)
- Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1 (2010)
- Kim DW, Kim DK, Kim CW, Koh JC, Park DW, Korean Chem. Eng. Res., 48(3), 332 (2010)
- Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441 (2010)
- Lin HY, Yang BL, Sun JJ, Wang XP, Wang DP, Chem. Eng. J., 103(1-3), 21 (2004)
- Selva M, Perosa A, Green Chem., 10, 457 (2008)
- Lee YS, Koh JC, Kim BS, Kim KJ, Koo KK, J. Korean Ind. Eng. Chem., 14(7), 1 (2003)
- Sakakura T, Kohno K, Chem. Commun., 1312 (2009)
- Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
- Wang MH, Wang H, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 46(9), 2683 (2007)
- Zhao WB, Wang F, Peng WC, Zhao N, Li JP, Xiao FK, Wei W, Sun YH, Ind. Eng. Chem. Res., 47(16), 5913 (2008)
- Wang X, Yang B, Wang D, Zhai X, Chem. Eng. J., 122, 1520 (2006)
- Kim DW, Kim CW, Koh JC, Park DW, J. Ind. Eng. Chem., 16(3), 474 (2010)
- Dharman MM, Ju HY, Shim HL, Lee MK, Kim YH, Park DW, J. Mol. Catal. A-Chem., 303(1-2), 96 (2009)
- Nockmann P, Thijs B, Pittois S, Thoen J, Glorieux C, Hecke KV, Meervelt LV, Kirchner B, Binnemans K, J. Phys. Chem. B., 110, 978 (2006)
- Kim CU, Kim YS, Chae HJ, Jeong KE, Jeong SY, Jun KW, Lee KY, Korean J. Chem. Eng., 27, 777 (2009)
- Li Z, Shkilnyy A, Taubert A, Crystal Growth & Design., 8(12), 4526 (2008)