화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.49, No.6, 769-774, December, 2011
NaOH 활성화된 탄소나노섬유의 직접 메탄올 연료전지용 연료극 촉매의 담지체로서의 특성 고찰
Characteristics of NaOH-Activated Carbon Nanofiber as a Support of the Anode Catalyst for Direct Methanol Fuel Cell
E-mail:
초록
NaOH 활성화법을 이용하여 다공성 탄소나노섬유(carbon nanofibers; 이하 CNF)를 온도 범위 700~900℃ 에서 합성하였고, 상기 제조된 다공성 CNF를 담지체로 하여 직접메탄올 연료전지의 연료극용 촉매를 제조하고 평가하였다. NaOH 활성화에 의한 CNF 표면 특성의 변화를 비표면적 및 기공 크기 분포 자료를 통하여 조사하였고, 형상 및 구조의 변화를 전자현미경을 통하여 관찰하였다. 활성화 CNF에 담지된 촉매의 활성을 메탄올 산화 특성 및 단위전지를 통하여 평가하였다. 본 활성화 방법에 의한 기공의 형성과 이에 담지된 촉매의 활성과의 관계에 대한 고찰을 하였다.
Porous carbon nanofibers(CNF) were synthesized via NaOH activation at 700~900 ℃, and the porous CNF-supported PtRu catalysts were evaluated for the anode in direct methanol fuel cells. The change of surface characteristics by NaOH activation was examined by analyses of the specific surface area and pore size distribution. The morphological and structural modification was investigated under scanning electron microscopy. The activity of catalysts supported on porous CNFs was examined by cyclic voltammograms and single cell tests. The pore formation on CNF by the NaOH activation was discussed, concerning the catalyst activity, when they were applied as catalyst supports.
  1. Maillard F, Simonov PA, Savinova ER, in Carbon Materials for Catalysis, Serp P, Figueiredo JL, eds., John Wiley & Sons, New Jersey (2009)
  2. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R, Nature., 412, 169 (2001)
  3. Lee J, Kim J, Hyeon T, Adv. Mater., 18(16), 2073 (2006)
  4. Li L, Xing Y, J. Phys. Chem. C., 111, 2803 (2007)
  5. Li WZ, Wang X, Chen ZW, Waje M, Yan YS, J. Phys. Chem. B, 110(31), 15353 (2006)
  6. Girishkumar G, Hall TD, Vinodgopal K, Kamat PV, J. Phys. Chem. B, 110(1), 107 (2006)
  7. Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM, J. Phys. Chem. B, 105(34), 8097 (2001)
  8. Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun MS, Hong S, Lim S, Yoon SH, Mochida I, Langmuir, 23(2), 387 (2007)
  9. Marsh H, Rodriguez-Reinoso F, Activated Carbon, Elsevier, Oxford (2000)
  10. Lim S, Jung D, Yoon SH, Mochida I, Carbon Letters., 9(1), 47 (2008)
  11. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A. Mochida I, Carbon., 42, 1723 (2004)
  12. Ahmadpour A, Do DD, Carbon., 34, 471 (1996)
  13. Otowa T, Nojima Y, Miyazaki T, Carbon., 35, 1315 (1997)
  14. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon., 41, 267 (2003)
  15. Jung MK, Kim SK, Jung DH, Peck DH, Shin JH, Shul YG, Yoon SH, Carbon Letters., 8, 37 (2007)
  16. Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I, J. Power Sources, 133(2), 298 (2004)
  17. Mitani S, Lee SI, Saito K, Korai Y, Mochida I, Electrochim. Acta, 51(25), 5487 (2006)
  18. Lee SI, Mitani S, Yoon SH, Korai Y, Mochida I, Carbon., 42, 2332 (2004)
  19. Park SM, Jung DH, Kim SK, Lim S, Peck D, Hong WH, Electrochim. Acta, 54(11), 3066 (2009)