화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.1, 116-122, January, 2012
Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC
E-mail:
To improve the electrical performance of activated carbon (AC)-based electric double-layer capacitors (EDLCs), the surface of AC was modified with gas phase ammonia treatment at 1073 K with different treatment times to carry out simultaneous etching and N-doping. The effects of the treatment on AC surfaces and their electrochemical properties were investigated. The specific capacitances of samples treated for 22 min were increased to 426 F/g at scan rates of 10 mV/s, which corresponded to a 76.8% increase as compared with 241 F/g of samples measured as received from the manufacturer. The increase is attributed to an increase in the specific surface area and the total pore, micro- and mesopore volumes due to the etching effect of the high-temperature ammonia gas reaction. Moreover, N-functional groups, which were introduced by the treatment, also aided to improve the electrochemical properties of the resulting AC-based electrode. Therefore, the simultaneous etching and N-doping method with ammonia gas at high temperature can easily introduce nitrogen functional groups on the AC surface. In addition, the reaction of nitrogen gas with AC can affect its specific surface area and surface pore structure, which is very effective in preparing AC for EDLCs with improved electrochemical properties.
  1. Rose MF, Johnson C, Owen T, Stephen B, J. Power Sources., 47, 303 (1994)
  2. Yang S, Kim IJ, Jeon MJ, Kim K, Moon SI, Kim HS, An KH, J. Ind. Eng. Chem., 14(3), 365 (2008)
  3. Arico AS, Bruce P, Tarascon JM, Van-Schalkwijk W, Nat. Mater., 4, 366 (2005)
  4. Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
  5. Kang KY, Hong SJ, Lee BI, Lee JS, Electrochem. Commun., 10, 1105 (2008)
  6. Lust E, Janes A, Parn T, Nigu P, J. Solid State Electrochem., 8, 224 (2004)
  7. Arulepp A, Permann L, Leis J, Perkson A, Rumma K, Janes A, Lust E, J. Power Sources, 133(2), 320 (2004)
  8. Bleda-Martinez MJ, Lozano-castello D, Morallon E, Cazorla-Amoros D, Linares-Solano A, Carbon., 44, 2642 (2006)
  9. Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
  10. Kim YJ, Abe Y, Yanagiura T, Park KC, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dre MS, Carbon., 45, 2116 (2007)
  11. Bleda-Martı´nez MJ, Macia´ -Agullo´ JA , Lozano-Castello´ D , Morallo´ n E, Cazorla-Amoro´ s D, Linares-Solano A, Carbon., 43, 2677 (2005)
  12. Thomas ER, Denisa HJ, Zhonghua Z, Lu GQ, Electrochem. Commun., 10, 1594 (2008)
  13. Kawaguchi M, Itoh A, Yagi S, Oda H, J. Power Sources, 172(1), 481 (2007)
  14. Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D, Carbon., 45, 1757 (2007)
  15. Savage T, Bhattacharya S, Sadanadan B, Gaillard J, Tritt TM, Sun YP, J. Phys. Conden. Mater., 15, 5915 (2003)
  16. Felten A, Bittencourt C, Pireaux JJ, Nanotechnology., 17, 1954 (2006)
  17. Hoshidaa T, Tsubonea D, Takadaa K, Kodamab H, Hasebec T, Kamijod A, Suzukia T, Hottaa A, Surf. Coat. Technol., 202, 1089 (2007)
  18. Hruska Z, Lepot X, J. Fluorine Chem., 105, 87 (2000)
  19. Hattori Y, Kanoh H, Okino F, Touhara H, Kasuya D, Yudasaka M, Iijima S, Kaneko K, J. Phys. Chem. B, 108(28), 9614 (2004)
  20. Jurewicz K, Babel K, Ziolkowski A, Wachowska H, Electrochim. Acta, 48(11), 1491 (2003)
  21. Przepiorski J, J. Hazard. Mater., 135(1-3), 453 (2006)
  22. Matsuguchi M, Tamai K, Sakai Y, Sens. Actuators B: Chem., 77, 363 (2001)
  23. Przepiorski J, Skrodzewicz M, Morawski AW, Appl. Surf. Sci., 225(1-4), 235 (2004)
  24. Jurewicz K, Babel K, Ziolkowski A, Wachowska H, Kozlowski M, Fuel Process. Technol., 77, 191 (2002)
  25. Xu L, Guo J, Jin F, Zeng H, Chemosphere., 62, 823 (2006)
  26. Little TW, Ohuchi FS, Surf. Sci., 445, 235 (2000)
  27. Im JS, Yun SM, Nho YC, Kang PH, Jin HK, Lee YS, Carbon Lett., 10, 314 (2009)
  28. Im JS, Park IJ, In SJ, Kim TJ, Lee YS, J. Fluorine Chem., 130, 1111 (2009)
  29. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T, J. Power Sources, 158(2), 1510 (2006)
  30. Yamamoto K, Koga Y, Fujiwara S, Jpn. J. Appl. Phys., 40, L123 (2001)
  31. Raymundo-Pinero E, Cazorla-Amoro´ s D, Linares-Solano A, Carbon., 41, 1925 (2003)
  32. Kim JN, Choi MK, Ryoo R, Bull. Korean Chem. Soc., 29, 413 (2008)
  33. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E, Chem. Phys. Lett., 404(1-3), 53 (2005)
  34. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ, Carbon., 46, 1475 (2008)
  35. Rathore RS, Srivastava DK, Agarwal AK, Verma N, J. Hazard. Mater., 173(1-3), 211 (2010)
  36. Gregg SJ, Sing KSW, Adsorption Surface Area and Porosity, second ed., Academy Press, London, 195 (1982)
  37. Liu HY, Wang KP, Teng H, Carbon., 43, 559 (2005)
  38. Frackowiak E, Beguin F, Carbon., 39, 937 (2001)
  39. Portet C, Taberna PL, Simon P, Flahaut E, J. Power Sources, 139(1-2), 371 (2005)
  40. Okajima K, Ikeda A, Kamoshita K, Sudoh M, Electrochim. Acta, 51(5), 972 (2005)
  41. Fuertes AB, Lota G, Centeno TA, Frackowiak E, Electrochim. Acta, 50(14), 2799 (2005)
  42. Xu B, Wu F, Chen R, Cao G, Chen S, Zhou Z, Yang Y, Electrochem. Commun., 10, 795 (2008)
  43. Kim SG, Yim JB, Kim KM, Lee YW, Kim MS, Kang AS, HWAHAK KONGHAK, 39(4), 424 (2001)
  44. Kim ND, Kim W, Joo JB, Oh S, Kim P, Kim Y, Yi J, J. Power Sources, 180(1), 671 (2008)
  45. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM, Carbon., 44, 216 (2006)