화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.2, 379-384, April, 2012
금 표면 위에 형성된 글루타싸이온 층의 표면 물성
Surface Properties of Glutathione Layer Formed on Gold Surfaces
E-mail:
초록
이산화티탄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione 층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층표면과 이산화티탄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 정전기적인 특성들이 정량적으로 산출되었다. 이 특성들이 염 농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8과 11에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. pH 8과 11에서 Glutathione 층의 표면이 이산화 티탄 표면보다 높은 정전기적 특성을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.
It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the TiO2 surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.
  1. Sun SQ, Mendes P, Critchley K, Diegoli S, Hanwell M, Evans SD, Leggett GJ, Preece JA, Richardson TH, Nano Lett., 6(3), 345 (2006)
  2. Peter A, Baia M, Toderas F, Lazar M, Tudoran LB, Danciu V, Studia Universitatis Babes-bolyai Chemia., 54(3), 161 (2009)
  3. Kowalska E, Mahaney OOP, Abe R, Ohtani B, Phys. Chem. Chem. Phys., 12(10), 2344 (2010)
  4. Perlich J, Memesa M, Diethert A, Metwalli E, Wang W, Roth SV, Timmann A, Gutmann JS, Mller-Buschbauma P, Chem. Phys., 10(5), 799 (2009)
  5. Li J, Zeng HC, Chem. Mater., 18, 4270 (2006)
  6. Tian Y, Tatsuma T, J. Am. Chem. Soc., 127(20), 7632 (2005)
  7. Kafizas A, Kellici S, Darr JA, Parkin IP, J.Photochem. Photobiol. A-Chem., 204(2-3), 183 (2009)
  8. Valden M, Lai X, Goodman DW, Science, 281(5383), 1647 (1998)
  9. Sakurai H, Tsubota S, Haruta M, Appl. Catal. A-Gen., 102(2), 125 (1993)
  10. Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28(6), 1015 (2007)
  11. Schmid G, Chem. Rev., 92(8), 1709 (1992)
  12. Jo K, Kang HJ, Yang H, Bull.Korean Chem. Soc., 32(2), 728 (2011)
  13. Cheow WS, Li S, Hadinoto K, Chem. Eng. Res. Des., 88(5-6A), 673 (2010)
  14. Chou J, McFarland EW, Chem. Commun., 5(14), 1648 (2004)
  15. Dasog M, Scott RWJ, Langmuir, 23(6), 3381 (2007)
  16. Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 33 (2001)
  17. Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089 (2001)
  18. Ducker WA, Senden TJ, Langmuir., 8(7), 1831 (1992)
  19. Binnig G, Quate CF, Gerber C, Phys. Rev. Lett., 56(9), 930 (1986)
  20. Derjaguin BV, Landau L, Acta Physiochem. URSS., 14(11), 633 (1941)
  21. Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64(2), 403 (1993)
  22. Derjaguin B, Trans. Faraday Soc., 35(3), 203 (1940)
  23. Israelachvili JN, Adams GE, J. Chem. Soc. Faraday Trans., 74, 975 (1978)
  24. Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108 (1993)
  25. Parker JL, Christenson HK, J. Chem.Phys., 88(12), 8013 (1988)
  26. O’Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336 (1994)
  27. Derjaguin BV, Kolloid Z., 69(2), 155 (1934)
  28. Hartmann U, Phys. Rev. B., 43(3), 2404 (1991)
  29. Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183 (1991)
  30. Feiler A, Jenkins P, Ralston J, Phys. Chem. Chem. Phys., 2(24), 5678 (2000)
  31. Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51 (1948)
  32. Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., (522P), 62, 1638 (1966)
  33. Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396 (1987)
  34. Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283 (1980)
  35. Parker JL, Prog. Surf. Sci., 47(3), 205 (1994)
  36. Park JW, Ahn DJ, Colloids. Surf. B: Biointerfaces., 62(1), 157 (2008)
  37. Ducker WA, Senden TJ, Pashley RM, Nature., 353(6341), 239 (1991)
  38. Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404 (1989)
  39. Pashley RM, J. Colloid Interface Sci., 83(2), 531 (1981)