화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.4, 421-427, August, 2012
경유의 윤활 성능 향상을 위한 식물유 기반 알칸올 아마이드의 합성
Synthesis of Vegetable-based Alkanol Amides for Improving Lubricating Properties of Diesel Fuel
E-mail:
초록
초저유황 경유의 윤활성능을 향상시킬 목적으로 식물유 기반 알칸올 아마이드 유도체를 합성하여 윤활성능을 평가하였다. 알칸올 아마이드 유도체는 폐식물유(다크오일), 팜유, 코코넛유를 메탄올과의 연속 전이에스테르화 반응을 통하여 합성한 지방산 메틸에스테르와 디에탄올아민(DEA)의 아마이드화 반응을 행하여 합성하였다. 합성한 알칸올 아마이드 유도체는 1 wt% 범위 내에서 초저유황 경유에 잘 용해되었으며, 이 유도체를 120 ppm 포함한 초저유황 경유의 윤활성능을 HFRR법으로 측정하였다. 그 결과, 초저유황 경유의 마모흔의 직경이 581 μm에서 아마이드 첨가 후 305∼323 μm으로 현저히 작아져 초저유황 경유의 윤활성능을 향상하는 것으로 확인되었다. 한편, 식물유의 종류에 따른 마모흔의 차이는 크지 않아 알칸올 아마이드 유도체의 알킬기의 구조에 따른 윤활성능의 차이는 크게 나타나지 않았다. 알칸올 아마이드 한 종류를 선정하여 첨가 농도에 따른 윤활성능을 평가한 결과, 농도에 따라 마모흔의 직경이 현저히 작아지는 결과를 얻었는데 이는 윤활성능이 첨가 농도에 따라 향상되는 것을 의미한다.
To improve the lubricity of ultra low sulfur diesel, vegetable oil-based alkanol amide derivatives were prepared and their lubricity properties were studied. To synthesize the alkanol amides, we conducted the amidation reaction of diethaolamine High Frequency Reciprocating Rig (HFRR) and the fatty acid methyl esters, obtained by the continuous transesterification of methanol and several vegetable oil, such as soybean oil, palm oil and coconut oil. The synthesized amides were soluble in ultra low sulfur diesel in the concentration range of ca. 1 wt%; the lubricating properties of ultra low sulfur diesel containing 120 ppm of amides were measured using an HFRR method. It was found that the wear scar diameter in the pure ultra low sulfur diesel decreased significantly from 581 μm to 305∼323 μm upon the addition of the amides, indicating that lubricating properties of the diesel were improved. On the other hand, the types of vegetable oils did not affect the wear scar diameters, implying that lubricating properties of the diesel did not depend strongly on the structures of alkyl groups of alkanol amide derivatives. When we measured the lubricating properties of the one type of diesels containing various amounts of alkanol amide, we observed that the wear scar diameter decreased drastically with increasing the amide concentration, meaning that the lubricity improved with the amide concentration.
  1. Kolb CE, Herndon SC, Mcmanus JB, Shorter JH, Zahniser MS, Nelson DD, Jayne JT, Canagaratna MR, Worsnop DR, Environ. Sci. Technol., 38, 5694 (2004)
  2. Solomon S, Rev. Geophy., 37, 275 (1999)
  3. Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424 (2007)
  4. Song C, Fuel Chemistry Division Preprints., 47, 438 (2002)
  5. Yao YC, Tsai JH, Chang AL, Jeng FT, Atmos.Environ., 42, 6560 (2008)
  6. Lappas AA, Budisteanu R, Drakaki K, Vasalos IA, Global Nest: the Int. J., 1, 15 (1999)
  7. Song CS, Catal. Today, 86(1-4), 211 (2003)
  8. Wei DP, Final Report TS010/85, Tribology Section, Imperial College (1985)
  9. Wei D, Spikes H, Wear., 1, 17 (1986)
  10. Anastopoulos G, Lois E, Karonis D, Zanikos F, Kalligeros S, Ind. Eng. Chem. Res., 40(1), 452 (2001)
  11. Caprotti R, Bovington C, Fowler W, Taylor MG, SAE Paper 922183; Society of Automotive Engineers: Warrendale, PA (1992)
  12. Batt RJ, McMillan JA, Bradbury IP, SAE Paper 961943; Society of Automotive Engineers : Warrendale, PA (1996)
  13. Nikanjam M, Burk E, SAE Paper 940248; Society of Automotive Engineers: Warrendale, PA (1994)
  14. Nikanjam M, SAE Paper 942014; Society of Automotive Engineers: Warrendale, PA (1994)
  15. Galbraith RM, Hertz PB, SAE Paper 972862; Society of Automotive Engineers : Warrendale, PA (1997)
  16. Kays WM, Crawford ME, Convective Heat and Mass Transfer, 2nd ed, 1, 87, Ma Graw-Hill, New York (1980)
  17. Karonis D, Anastopoulos G, Lois E, Stournas S, Zannikos F, Serdari A, SAE Paper 1999-01-1471; Society of Automotive Engineers : Warrendale, PA (1999)
  18. Bhatnagar AK, Kaul S, Chhibber VK, Gupta AK, Energy Fuels, 20(3), 1341 (2006)
  19. Moser BR, Energy Fuels, 22(6), 4301 (2008)
  20. Siniawski MT, Saniei N, Adhikari B, Doezema LA, J.Synth. Lubr., 24, 101 (2007)
  21. Knothe G, Steidley KR, Energy Fuels, 19(3), 1192 (2005)
  22. Anastopoulos G, Lois E, Zannikos F, Kalligeros S, Teas C, Tribol. Int., 34, 749 (2001)
  23. Anastopoulos G, Lois E, Serdari A, Zanikos F, Stournas S, Kalligeros S, Energy Fuels, 15(1), 106 (2001)
  24. Baek SY, Kim YW, Chung KW, Yoo SH, Appl. Chem. Eng., 22(4), 367 (2011)
  25. Baek SY, Kim YW, Chung K, Yoo SH, Kim NK, Kim YJ, Ind. Eng. Chem. Res., 51(9), 3564 (2012)
  26. Singh AK, Singh RK, J. Surfact Deterg., 15, 399 (2012)
  27. Chen CI, Hsu SM, Tribology Lett., 14, 83 (2003)
  28. American Society for testing and Materials, ASTM designation, ASTM D664 Philadelphia.
  29. American Society for testing and Materials, ASTM designation, D5558 Philadelphia.
  30. D’Alelio BYGF, Reid EE, J. Am. Chem. Soc., 59, 111 (1937)
  31. Liu KJ, Nag A, Shaw JF, J. Agric. Food Chem., 49, 5761 (2001)
  32. American Society for testing and Materials, ASTM designation, D6079 Philadelphia.