화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.5, 850-859, October, 2012
유동층 반응기에서의 목질계 바이오매스 입자의 탈휘발 예측 모델
A Devolatilization Model of Woody Biomass Particle in a Fluidized Bed Reactor
E-mail:
초록
목질계 바이오매스의 가스화 및 열분해 공정에서 탈휘발 과정은 매우 중요한 메커니즘 중의 하나이며, 공정 설계 시 반드시 반영되어야 한다. 바이오매스 입자의 탈휘발에 대한 많은 경험식이 존재하지만, 다양한 특성의 바이오매스를 특정 실험조건에서 도출한 경험식에 의존하기는 힘들다. 본 연구는 유동층 가스화 분위기에서의 바이오매스 단일 입자의 탈휘발 과정을 수학적 모델을 통하여 예측하였다. 모델은 다양한 형태의 입자를 구형태로 변환한 뒤, 입자 내부의 drying, shrinkage, heat generation을 고려하여 1차원으로 해석하였다. 또한 탈휘발 과정에 영향을 주는 입자의 크기, 반응온도, 초기 수분함량, 열전달 계수, 반응모델 등 다양한 변수에 대한 변화를 관찰하였다. 탈휘발 완료시간은 입자의 크기가 커질수록, 초기 수분함량이 높을수록 증가하였으며, 반응온도가 높을수록 선형적으로 감소하였다. 또한 외부 열전달 계수가 300 W/m2K 이상일 경우 큰 변화는 나타나지 않았지만, 입자의 크기가 작을수록 외부 열전달 계수의 영향은 크게 나타났다. 모델 예측값과 문헌의 실험값은 대체로 비슷한 경향을 나타내었으며, 오차 ±10% 이내로 근접하였다.
Devolatilization is an important mechanism in the gasification and pyrolysis of woody biomass, and has to be accordingly considered in designing a gasifier. In order to describe the devolatilization process of wood particle, there have been proposed a number of empirical correlations based on experimental data. However, the correlations are limited to apply for various reaction conditions due to the complex nature of wood devolatilization. In this study, a simple model was developed for predicting the devolatilization of a wood particle in a fluidized bed reactor. The model considered the drying, shrinkage and heat generation of intra-particle for a spherical biomass. The influence of various parameters such as size, initial moisture content, heat transfer coefficient, kinetic model and temperature, was investigated. The devolatilization time linearly increased with increasing initial moisture content and size of a wood particle, whereas decreases with reaction temperature. There is no significant change of results when the external heat transfer coefficient is over 300 W/m2K, and smaller particles are more sensitive to the outer heat transfer coefficient. Predicted results from the model show a similar tendency with the experimental data from literatures within a deviation of 10%.
  1. de Diego LF, Garcia-Labiano F, Abad A, Gayan P Adanez J, Energy Fuels, 17, 1145 (2003)
  2. Bellais M, Modelling of the Pyrolysis of Large Wood Particles, Ph.D. thesis, KTH Royal Institue of Technology (2007)
  3. Di Blasi C, Hernandez EG, Santoro A, Ind. Eng. Chem. Res., 39(4), 873 (2000)
  4. Diblasi C, Chem. Eng. Sci., 51(7), 1121 (1996)
  5. Jand N, Foscolo PU, Ind. Eng. Chem. Res., 44(14), 5079 (2005)
  6. de Diego LF, Garcia-Labiano F, Abad A, Gayan P, Adanez J, Ind. Eng. Chem. Res., 41(15), 3642 (2002)
  7. Bryden KM, Hagge MJ, Fuel, 82(13), 1633 (2003)
  8. Papadikis K, Gu S, Bridgwater AV, Fuel Process. Technol., 91(1), 68 (2010)
  9. Kersten SRA, Wang XQ, Prins W, van Swaaij WPM, Ind. Eng. Chem. Res., 44(23), 8773 (2005)
  10. Semino D, Tognotti L, Comput. Chem. Eng., 22(S), 699 (1998)
  11. Di Felice R, Coppola G, Rapagna S, Jand N, Can. J. Chem. Eng., 77(2), 325 (1999)
  12. Di Blasi C, Chem. Eng. Sci., 55(24), 5999 (2000)
  13. Luo Z, Wang S, Cen K, Renew. Energy., 30, 377 (2005)
  14. Saastamoinen JJ, Fuel, 85(17-18), 2388 (2006)
  15. Sreekanth M, Sudhakar DR, Prasad BVSSS, Kolar AK, Leckner B, Fuel, 87(12), 2698 (2008)
  16. Sudhakar DR, Kolar AK, Energy Fuels., 24, 4820 (2010)
  17. Gronli MG, Melaaen MC, Energy Fuels, 14(4), 791 (2000)
  18. Bharadwaj A, Baxter LL, Robinson AL, Energy Fuels, 18(4), 1021 (2004)
  19. Larfeldt J, Leckner B, Melaaen MC, Fuel., 79, 1637 (2000)
  20. Babu BV, Chaurasia AS, Chem. Eng. Sci., 59(10), 1999 (2004)
  21. Di Blasi C, Prog. Energy Combust. Sci., 34(1), 47 (2008)
  22. Chan WR, Kelbon M, Krieger BB, Fuel., 64, 1505 (1985)
  23. Thurner F, Mann U, Ind. Eng. Chem. Process Des., 482 (1981)
  24. Davidsson KO, “Biofuel Pyrolysis and On-line Alkali Measurements," Ph.D. thesis,Goteborg University (2002)
  25. Font, R, Marcilla A, Verdu E, Devesa J, Ind. Eng. Chem. Res., 29, 1846 (1990)
  26. Gomez-Barea A, Leckner B, Prog. Energy Combust. Sci., 36, 444 (2010)
  27. Sreekanth M, Kolar AK, Leckner B, Fuel Process. Technol., 89(9), 838 (2008)
  28. Koufopanos CA, Papayannakos N, Maschio G, Lucchesi A, Can.J. Chem. Eng., 69, 907 (1991)
  29. http://en.wikipedia.org/wiki/Thermal_conductivity (Accessed: Feb.2012).
  30. Simpson W, Tenwolde A, Chapter 3. Physical Properties and Moisture Relations of Wood: Wood Handbook - Wood as an Engineering Material, University Press of the Pacific (1999)
  31. Stull DR, JANAF thermochemical tables, US Government Printing Office, Washington (1971)
  32. Borman GL, Ragland KW, Combustion engineering, McGraw-Hill, New York (1998)
  33. http://www.engineeringtoolbox.com/water-vapor-d_979.html (Accessed:Feb. 2012).
  34. Siau JF, Transport Processes in Wood, Springer, New York (1984)
  35. Sreekanth M, “Thermo-physical Behaviour of Wood During Devolatilization in a Fluidized Bed Combustor,” Ph.D. thesis, Department of mechanical engineering, Indian Institute of Technology, Madras (2010)
  36. Palchonok GI, Breitholtz C, Borodulya VA, Leckner B, in Fan LS, Knowlton TM (Ed.), Effect of turbulence on heat and mass transfer in the freeboard region of stationary and circulating fluidized beds: Fluidization IX, Engineering Foundation, New York, 413 (1998)
  37. Konttinen J, Kallio S, Kilpinen P, Oxidation of a Single Char Particle Extention of the Model and Re-Estimation of Kinetic Rate Constants, Report, Abo Akademi, Process Chemistry Centre (2002)
  38. Molerus O, Mattmann W, Chem. Eng. Technol., 15, 139 (1992)
  39. Leckner B, in Crowe CT (Ed.), Chapter 5.2 Heat and mass transfer: Multiphase Flow Handbook, CRC Press (2006)
  40. Kumar RR, Kolar AK, in Bridgwater AV, Boocock DGB (Ed.), Effect of fuel particle shape and size on devolatilization time of Casuarina wood: Science in Thermal and Chemical Biomass Conversion Vol.2, CPL press, Newbury Berks, UK (2006)
  41. Di Blasi C, Branca C, Energy Fuels, 17(1), 247 (2003)