화학공학소재연구정보센터
Heat Transfer Engineering, Vol.26, No.5, 42-46, 2005
An evaluation of heat transfer surface materials used in fouling applications
Fouling is a very important and complex problem that extends into many fields, including natural, chemical, medical, and industrial processes. Fouling of a surface takes place as a result of the complex reactions that cause deposits to form on process surfaces. A number of parameters influence fouling development, including flow velocity, surface temperature, surface material/finish, surface geometry and fluid properties. Fouling is a transient process that begins with a clean process surface and progresses until the surface no longer can be used effectively. The event sequence of the fouling process appears in general to be universal, beginning when fluid comes into contact with a process surface. During the induction period, the conditioning film forms with heat transfer efficiencies not changing significantly. Conditioning film development is followed by a rapid accumulation of deposit growth. It is during this growth phase that the heat transfer across the process surface starts to dramatically change. Finally a pseudo steady-state period takes place when accumulation is almost constant. Deposit accumulation causes efficiencies to significantly decrease, and a complete surface cleaning may be required. Conclusions and observations regarding the materials/surfaces that are commonly used in designs where fouling may be a concerti are presented here. Comparisons of fouling rate and deposit thickness are given for several materials.