1 |
Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads Kazmi H, Suykens J, Balint A, Driesen J Applied Energy, 238, 1022, 2019 |
2 |
Modeling and validation of a DC/DC power converter for building energy simulations: Application to BIPV systems Spiliotis K, Goncalves JE, Van De Sande W, Ravyts S, Daenen M, Saelens D, Baert K, Driesen J Applied Energy, 240, 646, 2019 |
3 |
Electricity load-shedding in Pakistan: Unintended consequences, opportunities and policy recommendations Kazmi H, Mehmood F, Tao ZM, Riaz Z, Driesen J Energy Policy, 128, 411, 2019 |
4 |
A critical review of power quality standards and definitions applied to DC microgrids Van den Broeck G, Stuyts J, Driesen J Applied Energy, 229, 281, 2018 |
5 |
Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems Kazmi H, Mehmood F, Lodeweyckx S, Driesen J Energy, 144, 159, 2018 |
6 |
Bayesian inference based MPPT for dynamic irradiance conditions Lefevre B, Herteleer B, De Breucker S, Driesen J Solar Energy, 174, 1153, 2018 |
7 |
Reconfigurable emulator for photovoltaic modules under static partial shading conditions Mai TD, De Breucker S, Baert K, Driesen J Solar Energy, 141, 256, 2017 |
8 |
Spatial and temporal analysis of wind effects on PV modules: Consequences for electrical power evaluation Goverde H, Goossens D, Govaerts J, Catthoor F, Baert K, Poortmans J, Driesen J Solar Energy, 147, 292, 2017 |
9 |
Normalised efficiency of photovoltaic systems: Going beyond the performance ratio Herteleer B, Huyck B, Catthoor F, Driesen J, Cappelle J Solar Energy, 157, 408, 2017 |
10 |
Revision of reserve requirements following wind power integration in island power systems De Vos K, Petoussis AG, Driesen J, Belmans R Renewable Energy, 50, 268, 2013 |