101 - 107 |
Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them Bauer F, Willert-Porada A |
108 - 115 |
Proton exchange membranes based on the short-side-chain perfluorinated ionomer Ghielmi A, Vaccarono P, Troglia C, Arcella V |
116 - 123 |
Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film Golikand AN, Golabi SM, Maragheh MG, Irannejad L |
124 - 132 |
Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension Sen Gupta S, Datta J |
133 - 138 |
Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization Horita T, Yamaji K, Kato T, Kishimoto H, Xiong YP, Sakai N, Brito ME, Yokokawa H |
139 - 146 |
Preparation and application of nanoporous carbon templated by silica particle for use as a catalyst support for direct methanol fuel cell Kim P, Kim HS, Joo JB, Kim WY, Song IK, Yi JH |
147 - 153 |
A study on composite PtRu(1 : 1)-PtSn(3 : 1) anode catalyst for PEMFC Lee D, Hwang S, Lee I |
154 - 160 |
Sensitivity of nickel cermet anodes to reduction conditions Mallon C, Kendall K |
161 - 168 |
Characterisation of Co-based electrocatalytic materials for O-2 reduction in fuel cells Manzoli A, Boccuzzi F |
169 - 177 |
Experimental investigation of anodic gaseous concentration of a practical seal-less solid oxide fuel cell Momma A, Kaga Y, Takano K, Nozaki K, Negishi A, Kato K, Kato T, Inagaki T, Yoshida H, Hoshino K, Yamada M, Akbay T, Akikusa J |
178 - 187 |
The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova SV, Kryukova GN, Stimming U |
188 - 198 |
Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs Schaffer T, Hacker V, Hejze T, Tschinder T, Besenhard JO, Prenninger P |
199 - 205 |
Evaluation of volatile behaviour and the volatilization volume of molten salt in DIR-MCFC by using the image measurement technique Sugiura K, Yamauchi M, Tanimoto K, Yoshitani Y |
206 - 215 |
Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes Waldbillig D, Wood A, Ivey DG |
216 - 222 |
Analysis of membrane electrode assembly (MEA) by environmental scanning electron microscope (ESEM) Yu HM, Schumacher JO, Zobel M, Hebling C |
223 - 230 |
Experimental and computational study of proton and methanol permeabilities through composite membranes Zhang X, Filho LP, Torras C, Garcia-Valls R |
231 - 236 |
Proton-conducting methacrylate-silica sol-gel membranes containing tungstophosphoric acid Aparicio A, Mosa J, Etienne A, Duran A |
237 - 242 |
Self-propagating room temperature synthesis of nanopowders for solid oxide fuel cells (SOFC) Boskovic S, Djurovic D, Dohcevic-Mitrovic Z, Popovic Z, Zinkevich A, Aldinger E |
243 - 248 |
Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs Hwang HJ, Ji-Woong MB, Seunghun LA, Lee EA |
249 - 252 |
Contaminant absorption and conductivity in polymer electrolyte membranes Kelly MJ, Fafilek G, Besenhard JO, Kronberger H, Nauer GE |
253 - 256 |
Energy accumulation and improved performance in microbial fuel cells Ieropoulos L, Greenman J, Melhuish C, Hart J |
257 - 261 |
Morphology control of La(Sr)Fe(Co)O3-a cathodes for IT-SOFCs Murata K, Fukui T, Abe H, Naito M, Nogi K |
262 - 265 |
Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes Pelletier L, McFarlan A, Maffei N |
266 - 271 |
Ethanol crossover phenomena and its influence on the performance of DEFC Song S, Zhou W, Tian J, Cai R, Sun G, Xin Q, Kontou S, Tsiakaras P |
272 - 277 |
Electrochemical and microstructural characterization of polymeric resin-derived multilayered composite cathode for SOFC Song HS, Hyun SH, Moon J, Song RH |
278 - 281 |
Improved energy efficiency of the electrolytic evolution of hydrogen -Comparison of conventional and advanced electrode materials Stojic DL, Maksic AD, Kaninski MPM, Cekic BD, Mijanic SS |
282 - 285 |
Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell Verma A, Basu S |
286 - 291 |
Electrocatalytic oxidation of small organic molecules on polyaniline-Pt-HxMoO3 Wu YM, Li WS, Lu J, Du JH, Lu DS, Fu JM |
292 - 297 |
Lignin-based membranes for electrolyte transference Zhang X, Benavente J, Garcia-Valls R |
298 - 306 |
Effects of ambient conditions on fuel cell vehicle performance Haraldsson K, Alvfors P |
307 - 311 |
Spatially resolved measurement of PEM fuel cells Hakenjos A, Hebling C |
312 - 318 |
Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas Heinzel A, Roes J, Brandt H |
319 - 326 |
Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics Jeong KS, Lee WY, Kim CS |
327 - 335 |
Testing and model-aided analysis of a 2 kW(el) PEMFC CHP-system Konig P, Weber A, Lewald N, Aicher T, Jorissen L, Ivers-Tiffee E, Szolak R, Brendel M, Kaczerowski J |
336 - 352 |
Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500-600 degrees C Leah RT, Brandon NP, Aguiar P |
353 - 361 |
Analyses of the fuel cell stack assembly pressure Lee SJ, Hsu CD, Huang CH |
362 - 368 |
Stainless steel bipolar plates Lee SJ, Lai JJ, Huang CH |
369 - 375 |
Electroforming of metallic bipolar plates with micro-featured flow field Lee SJ, Chen YP, Huang CH |
376 - 382 |
Chemicals and energy co-generation from direct hydrocarbons/oxygen proton exchange membrane fuel cell Li WS, Lu DS, Luo JL, Chuang KT |
383 - 391 |
Rapid (practical) methodology for creation of fuel cell systems models with scalable complexity Nitsche C, Schroedl S, Weiss W, Pucher E |
392 - 398 |
Integration of high temperature PEM fuel cells with a methanol reformer Pan C, He RH, Li QF, Jensen JO, Bjerrum NJ, Hjulmand HA, Jensen AB |
399 - 406 |
Simplified evaluation of PEM-fuel cells by reduction of measurement parameters and using optimised measurement algorithms Purmann M, Styczynski Z |
407 - 415 |
Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells Oszcipok M, Riemann D, Kronenwett U, Kreideweis M, Zedda A |
416 - 427 |
Modelling of heat, mass and charge transfer in a PEMFC single cell Ramousse J, Deseure J, Lottin O, Didierjean S, Maillet D |
428 - 434 |
Design and fabrication of a 100 W anode supported micro-tubular SOFC stack Sammes NM, Du Y, Bove R |
435 - 462 |
Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation Schultz T, Sundmacher KS |
463 - 469 |
Steady state and transient thermal stress analysis in planar solid oxide fuel cells Selimovic A, Kemm M, Torisson T, Assadi M |
470 - 476 |
Transport phenomena and performance limits in polymeric electrolyte membrane fuel cells Serrafero A, Arato E, Costa P |
477 - 484 |
A new direct methanol fuel cell with a zigzag-folded membrane electrode assembly Shibasaki M, Yachi T, Tani T |
485 - 494 |
Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures Silva VS, Weisshaar S, Reissner R, Ruffmann B, Vetter S, Mendes A, Madeira LM, Nunes S |
495 - 501 |
Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance Song SQ, Liang ZX, Zhou WJ, Sun GQ, Xin Q, Stergiopoulos V, Tsiakaras P |
502 - 514 |
Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications Song SQ, Douvartzides S, Tsiakaras P |
515 - 525 |
MCFC performance diagnosis by using the current-pulse method Sugiura K, Matsuoka H, Tanimoto K |
526 - 533 |
Evaluation of a cathode gas channel with a water absorption layer/waste channel in a PEFC by using visualization technique Sugiura K, Nakata M, Yodo T, Nishiguchi Y, Yamauchi M, Itoh Y |
534 - 545 |
Polymer electrolyte fuel cell stack thermal model to evaluate sub-freezing startup Sundaresan M, Moore RM |
546 - 554 |
Numerical prediction of concentration and current distributions in PEMFC Weng FB, Su A, Jung GB, Chiu YC, Chan SH |
555 - 562 |
Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells Wittstadt U, Wagner E, Jungmann T |
563 - 571 |
Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell (PEMFC) Ying W, Sohn YJ, Lee WY, Ke J, Kim CS |
572 - 581 |
Three-dimensional analysis for effect of channel configuration on the performance of a small air-breathing proton exchange membrane fuel cell (PEMFC) Ying W, Yang TH, Lee WY, Ke J, Kim CS |
582 - 587 |
Utilization of mine gas with a high-temperature SOFC fuel cell Au SF, Blum L, Dengel A, Gross B, de Haart LGJ, Kimmerle K, Wolf M |
588 - 593 |
Experimental comparison of MCFC performance using three different biogas types and methane Bove R, Lunghi P |
594 - 597 |
Multi channel voltage control for fuel cells Heideck G, Purmann M, Styczynski Z |
598 - 603 |
Thermodynamic properties of direct methanol polymer electrolyte fuel cell Seong JY, Bae YC, Sun YK |
604 - 609 |
Operating characteristics of an air-cooling PEMFC for portable applications Sohn YJ, Park GG, Yang TH, Yoon YG, Lee WY, Yim SD, Kim CS |
610 - 619 |
Experimental study of a fuel cell power train for road transport application Corbo P, Corcione FE, Mighardini F, Veneri O |
620 - 631 |
Fuel cell buses in the Stockholm CUTE project - First experiences from a climate perspective Haraldsson K, Folkesson A, Alvfors P |
632 - 638 |
Operation of molten carbonate fuel cells with different biogas sources: A challenging approach for field trials Trogisch S, Hoffmann J, Bertrand LD |
639 - 643 |
On-board fuel cell power supply for sailing yachts Beckhaus P, Dokupil M, Heinzel A, Souzani S, Spitta C |
644 - 651 |
WO3/CeO2/YSZ nanocomposite as a potential catalyst for methanol reforming Natile MM, Glisenti A |
652 - 658 |
Effect of lithium carbonate on nickel catalysts for direct internal reforming MCFC Choi JS, Yun JS, Kwon HH, Lim TH, Hong SA, Lee HI |
659 - 666 |
Ethanol oxidative steam reforming over Ni-based catalysts Fierro V, Akdim O, Provendier H, Mirodatos C |
667 - 674 |
Bi2O3-WO3 compounds for photocatalytic applications by solid state and viscous processing Finlayson AP, Ward E, Tsaneva VN, Glowacki BA |
675 - 682 |
Compact gasoline fuel processor for passenger vehicle APU Severin C, Pischinger S, Ogrzewalla J |
683 - 690 |
Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit Specchia S, Tillemans FWA, van den Oosterkamp R, Saracco G |
691 - 696 |
Development of multi-layered microreactor with methanol reformer for small PEMFC Terazaki T, Nomura M, Takeyama K, Nakamura O, Yamamoto T |
697 - 701 |
First investigations of structural changes of the contact mass in the RESC process for hydrogen production Kindermann H, Kornberger M, Hierzer J, Besenhard JO, Hacker V |
702 - 706 |
Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems Park GG, Yim SD, Youn YG, Lee WY, Kim CS, Seo DJ, Eguchi K |
707 - 711 |
Steam reforming of gasoline promoted by partial oxidation reaction on novel bimetallic Ni-based catalysts to generate hydrogen for fuel cell-powered automobile applications Wang LS, Murata K, Inaba M |
712 - 715 |
Construction of fuel reformer using proton conducting oxides electrolyte and hydrogen-permeable metal membrane cathode Yamaguchi S, Yamamoto S, Tsuchiya B, Nagata S, Shishido T |