화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.31, No.4, 585-594, 2011
Removal of C3F8 Via the Combination of Non-Thermal Plasma, Adsorption and Catalysis
The feasibility of C3F8 abatement via combining nonthermal plasma with adsorption and/or catalysis is investigated in this study. In terms of the simultaneous combination of plasma, adsorption and catalysis (CPAC), three different configurations including A/C layer (adsorbent layer prior to catalyst layer), C/A layer (catalyst layer prior to adsorbent layer) and A/C mixture (adsorbent and catalyst are mechanically mixed) are adopted. For all the experimental tests conducted in this study, the gas stream consists of 500 ppm C3F8, 2% O-2, and balanced N-2. The experimental results indicate that C3F8 removal efficiencies depend on what kind of packing material is adopted (adsorbent, catalyst or both) and how the material is packed within the plasma reactor. The removal efficiencies obtained with different reactors are in the order as: CPAC (A/C layer; AC mixture) > CPA (plasma with adsorbent alone) > CPC (plasma with catalyst alone) > CPAC (C/A layer). The indentified products after treatment include CO2, CO, N2O and CF4. The formation of C2F6 is not observed in this study, which is encouraging since the global warming potential of C2F6 is actually higher than that of C3F8.