Journal of Industrial and Engineering Chemistry, Vol.18, No.6, 2069-2075, November, 2012
Study on the thermal decomposition features and kinetics of demineralized and inorganic metal-impregnated lignocellulosic biomass
E-mail:
After removing inorganic metals from poplar wood via demineralization with diverse solvents [HCl, HF, distilled water (DI-H2O)], respectively, changes in decomposition characteristics, maximum decomposition rate (Vmax) and corresponding temperature (Tmax), were observed using thermo-gravimetric analysis. Activation energies calculated by differential method were ranged from 160.5 to 188.1 kJ/mol for raw biomass, 157.5 to 233.2 kJ/mol for HCl-biomass, 172.3 to 220.3 kJ/mol for HF-biomass and 127.9 to 229.0 kJ/mol for DI-H2O-biomass. The demineralized samples were also subjected to TGA analysis after impregnation with K, Ca, and Mg. Interestingly; only potassium had catalytic effects on cellulose decomposition. A significant decrease in Tmax was attributable to an increase in potassium content.
- Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T, Science., 311, 484 (2006)
- Raveendran K, Ganesh A, Khilar KC, Fuel., 74, 1812 (1995)
- Yuan JH, Xu RK, Zhang H, Bioresour. Technol., 102(3), 3488 (2011)
- Bridgwater A, Meier D, Radlein D, Organic Geochemistry., 30, 1479 (1999)
- Raveendran K, Ganesh A, Khilar KC, Fuel., 75, 987 (1996)
- Seo DK, Park SS, Hwang JH, Yu TU, Journal of Analytical and Applied Pyrolysis., 98, 66 (2010)
- Huang YF, Kuan WH, Chiueh PT, Lo SL, Bioresour. Technol., 102(3), 3527 (2011)
- Kim SS, Agblevor FA, Waste Management., 27, 135 (2007)
- Kim SS, Kim J, Park YH, Park YK, Bioresour. Technol., 101(24), 9797 (2010)
- Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH, Bioresour. Technol., 101(18), 7131 (2010)
- Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100(1), 400 (2009)
- Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82(15-17), 1949 (2003)
- Maiti S, Purakayastha S, Ghosh B, Fuel, 86(10-11), 1513 (2007)
- Agblevor FA, Besler S, Energy Fuels, 10(2), 293 (1996)
- Eom IY, Kim KH, Kim JY, Lee SM, Yeo HM, Choi IG, Choi JW, Bioresour. Technol., 102(3), 3437 (2011)
- Fahmi R, Bridgwater A, Donnison I, Yates N, Jones JM, Fuel, 87(7), 1230 (2008)
- Jensen PA, Frandsen FJ, Dam-Johansen K, Sander B, Energy Fuels, 14(6), 1280 (2000)
- Jensen A, Dam-Johansen K, Wojtowicz M, Serio M, Fuel., 12, 929 (1998)
- Kleen M, Gellerstedt G, Journal of Analytical and Applied Pyrolysis., 35, 15 (1995)
- Nowakowski DJ, Jones JM, Brydson RMD, Ross AB, Fuel, 86(15), 2389 (2007)
- Patwardhan PR, Satrio JA, Brown RC, Shanks BH, Bioresour. Technol., 101(12), 4646 (2010)
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, Laboratory Analytical Procedure LAP-002 (2006)
- Sluiter A, Hames B, Ruiz R, Scarlata J, Sluiter J, Templeton D, Laboratory Analytical Procedure (2005)
- Demirbas A, Fuel, 76(5), 431 (1997)
- Segal L, Creely JJ, Martin AE, Conrad CM, Textile Research Journal., 29, 786 (1959)
- Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H, Fuel Processing Technology., 91, 903 (2009)
- Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
- Caballero JA, Font R, Marcilla A, Conesa JA, Journal of Analytical and Applied Pyrolysis., 40-41, 433 (1997)
- Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 34(3), 703 (1995)
- Julien S, Chornet E, Tiwari PK, Overend RP, Journal of Analytical and Applied Pyrolysis., 19, 81 (1991)
- Williams PT, Besler S, Renewable Energy., 7, 233 (1996)
- Williams PT, Besler S, Fuel., 72, 151 (1993)
- Friedman HL, Journal of Polymer Science Part A: Polymer Chemistry., 6, 183 (1963)