화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.24, No.4, 267-275, December, 2012
Rheological characterization of poly(ethylene oxide) aqueous solution under dynamic helical squeeze flow
E-mail:
Oscillatory shear flow has been widely used to investigate the flow properties of a wide range of complex fluids. The flow is useful because experimental platform is already fixed and its analysis has sound theoretical background. However it is too simple compared to the complex flows encountered in industry. Accordingly, the rheological response of complex fluids needs to be investigated in more complicated flow field. There were several reports on the superimposed flows in which oscillatory flow was applied either parallel or perpendicular to the steady shear flow. In this paper, we propose dynamic helical squeeze flow (DHSQ) which superimposes oscillatory shear and oscillatory squeeze between parallel plates. The nonlinear response in DHSQ was studied by comparing DHSQ with oscillatory shear (OS) and with oscillatory squeeze (OSQ) in terms of stress shape and Lissajous plot. In DHSQ, both stress curve and Lissajous plot of shear and normal stresses showed nonsymmetric characteristics unlike shear stress in large amplitude oscillatory shear (LAOS). The normal stress in DHSQ was more distorted than that of OSQ. The shear stress in DHSQ showed the onset of nonlinearity at lower strain amplitude than that of oscillatory shear flow (OS). It is due to the coupling of shear and squeeze flows, and the effect was more pronounced in the shear stress than in the normal stress.
  1. Anderson VJ, Pearson JRA, Sherwood JD, J. Rheol., 50(5), 771 (2006)
  2. Bell D, Binding DM, Walters K, Rheol. Acta, 46(1), 111 (2006)
  3. Boukany PE, Wang SQ, J. Rheol., 53(6), 1425 (2009)
  4. Cho KS, Ahn KH, Lee SJ, J. Rheol., 49(3), 747 (2005)
  5. Dasgupta BR, Tee SY, Crocker JC, Frisken B, Weitz D, Phys. Rev. E., 65, 051505 (2002)
  6. Debbaut B, Thomas K, J. Non-Newton. Fluid Mech., 124(1-3), 77 (2004)
  7. Engmann J, Servais C, Burbidge AS, J. Non-Newton. Fluid Mech., 132(1-3), 1 (2005)
  8. Field JS, Swain MV, PhanThien N, J. Non-Newton. Fluid Mech., 65(2-3), 177 (1996)
  9. Hyun K, Kim W, Korea-Australia Rheol. J., 23, 227 (2011)
  10. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog.Polym. Sci., 36, 1697 (2011)
  11. Jiang P, See H, Swain MV, Phan-Thien N, Rheol. Acta, 42(1-2), 118 (2003)
  12. Kim JH, Ahn KH, Lee SJ, Mixed-Flow Rheometer, Korea Patent #10-0877494. (2008)
  13. Kim JH, Ahn KH, Lee SJ, Korean J. Chem. Eng., 29(8), 1010 (2012)
  14. Kim JH, Ahn KH, Rev. Sci. Inst., 83, 085105 (2012)
  15. Mewis J, Kaffashi B, Vermant J, Butera RJ, Macromolecules, 34(5), 1376 (2001)
  16. Mobuchon C, Carreau PJ, Heuzey MC, Reddy NK, Vermant J, J. Rheol., 53(3), 517 (2009)
  17. Nam JG, Ahn KH, Lee SJ, Hyun K, J. Rheol., 54(6), 1243 (2010)
  18. Osaki K, Tamura M, Kurata M, Kotaka T, J. Phys. Chem., 69, 4183 (1965)
  19. Ovarlez G, Barral Q, Coussot P, Nature Materials., 9, 115 (2010)
  20. Phan-Thien N, J. Australian Math. Soc., 22(Series B), 22 (1980)
  21. Phan-Thien N, J. Non-Newton. Fluid Mech., 95(2-3), 343 (2000)
  22. Phan-Thien N, Nasseri S, Bilston LE, Rheol. Acta, 39(4), 409 (2000)
  23. See H, Nguyen P, J. Soc. Rheol. Japan., 32, 33 (2004)
  24. Simmons J, J. Sci.Inst., 43, 887 (1966)
  25. Somma E, Valentino O, Titomanlio G, Ianniruberto G, J. Rheol., 51(5), 987 (2007)
  26. Vermant J, Moldenaers P, Mewis J, Ellis M, Garritano R, Rev. Sci.Inst., 68, 4090 (1997)
  27. Vermant J, Walker L, Moldenaers P, Mewis J, J. Non-Newton. Fluid Mech., 79(2-3), 173 (1998)
  28. Walberer JA, McHugh AJ, J. Rheol., 45(1), 187 (2001)
  29. Walker LM, Vermant J, Moldenaers P, Mewis J, Rheol. Acta, 39(1), 26 (2000)
  30. Wilhelm M, Maring D, Spiess HW, Rheol. Acta, 37(4), 399 (1998)
  31. Yu W, Wang P, Zhou CX, J. Rheol., 53(1), 215 (2009)