Korea-Australia Rheology Journal, Vol.24, No.4, 277-286, December, 2012
Isothermal and non-isothermal viscoelastic flow of PTT fluid in lid-driven polar cavity
E-mail:
The isothermal and non-isothermal viscoelastic flow of Phan-Thien-Tanner (PTT) fluids is considered in liddriven polar cavity geometry, using a numerical solution method with parameter continuation technique. Thermoelastic effects, in terms of elastic/elongational effects and viscous dissipation, are demonstrated by the changes in vortical structure, temperature/stress distributions and heat transfer characteristics in the curved cavity. Central vortex/maximum temperature location shifts are observed under elastic and elongational (strain hardening and strain softening/shear thinning) effects for isothermal and non-isothermal conditions. The growth in size and strength of a secondary vortex is denoted in the downstream stationary corner of the cavity for the viscoelastic fluid under strain hardening, which also introduces an increase in stress gradients. Viscous heating is observed with elongational effects near the central vortex in the cavity. Stress components and their gradients decrease under viscous dissipation. The changes in temperature field and heat transfer properties in the cavity are revealed.
Keywords:Lid-driven polar cavity;viscoelastic;thermoelastic;non-isothermal;viscous dissipation;Phan-Thien-Tanner fluid
- Al- Mubaiyedh UA, Sureshkumar R, Khomami B, J. Fluid Mech., 462, 111 (2002)
- Coelho PM, Pinho FT, Oliveira PJ, Int. J. Heat Mass Transf., 46(20), 3865 (2003)
- Darbandi M, Vakilipour S, Int. J. Numer. Meth.Fluid., 56, 115 (2008)
- Dris I, Shaqfeh ESG, J. Non-Newton. Fluid Mech., 80(1), 59 (1998)
- Fattal R, Kupferman R, J. Non-Newton. Fluid Mech., 126(1), 23 (2005)
- Fuchs L, Tillmark N, Int. J. Numer. Meth. Fluid., 5, 311 (1985)
- Grillet AM, Yang B, Khomami B, Shaqfeh ESG, J. Non-Newton. Fluid Mech., 88(1-2), 99 (1999)
- Grillet AM, Shaqfeh ESG, Khomami B, J. Non-Newton. Fluid Mech., 94(1), 15 (2000)
- Karwe MW, Jaluria Y, Numer. Heat. Tr. A-Appl., 17, 167 (1990)
- Kim SW, Nasa Technical Memorandum ICOMP., 89 (1989)
- Lei C, Cheng L, Kavanagh K, Ocean Eng., 27, 271 (2000)
- Matthews JH, Fink KD, Numerical Methods Using Matlab, Prentice Hall, Upper Saddle River, NJ, USA. (1999)
- Mercan H, AtalIk K, European Journal of Mechanics- B/Fluids., 28, 61 (2009)
- Muller SJ, Korea-Aust. Rheol. J., 20(3), 117 (2008)
- Ngai KL, Plazek DJ, “Temperature dependencies of viscoelastic response of polymer systems,” Physical Properties of Polymers Handbook, Mark JE, 341 (1996)
- Peters GWM, Baaijens FPT, J. Non-Newton. Fluid Mech., 68(2-3), 205 (1997)
- Pinho FT, Coelho PM, J. Non-Newton. Fluid Mech., 138(1), 7 (2006)
- Thomas DG, Sureshkumar R, Khomami B, J. Non-Newton. Fluid Mech., 120(1-3), 93 (2004)
- Wu ZG, Zhang JZ, Zhou JJ, Tao WQ, Numer. Heat. Tr. BFund., 51, 229 (2007)
- Yataghene M, Fayolle F, Legrand J, Chem. Eng. Process., 48(10), 1445 (2009)
- Yesilata B, Int. Commun.Heat Mass., 29, 589 (2002)