Korean Journal of Chemical Engineering, Vol.30, No.4, 852-859, April, 2013
Continuous phenol hydroxylation over ultrafine TS-1 in a side-stream ceramic membrane reactor
E-mail:
A side-stream ceramic membrane reactor system was developed that can facilitate the in situ separation of ultrafine catalysts from the reaction mixture and make the production process continuous. Continuous hydroxylation of phenol to dihydroxybenzene over ultrafine titanium silicalites-1 (TS-1) was taken as a model reaction to evaluate the feasibility and performance of the membrane reactor system. The effects of membrane pore size and operation conditions
(residence time, temperature, catalyst concentration, phenol/H2O2 molar ratio) on the performance of the reactor system were examined via single factor experiments. We demonstrated that the membrane pore size and operation conditions greatly affect the conversion, selectivity and filtration resistance. The phenol conversion and dihydroxybenzene selectivity remain stable at about 11% and 95% in a 20-h continuous run, respectively.
- Mohamed RM, McKinney DL, Sigmund WM, Mater. Sci.Eng. R., 73, 1 (2012)
- Du Y, Chen HL, Chen RZ, Xu NP, Appl. Catal. A: Gen., 277(1-2), 259 (2004)
- Anastas PT, Kirchhoff MM, Williamson TC, Appl. Catal. A: Gen., 221(1-2), 3 (2001)
- Parra S, Stanca SE, Guasaquillo I, Thampi KR, Appl. Catal. B: Environ., 51(2), 107 (2004)
- Chen RZ, Bu Z, Li ZH, Zhong ZX, Jin WQ, Xing WH, Chem. Eng. J., 156(2), 418 (2010)
- Le-Clech P, Chen V, Fane TAG, J. Membr. Sci., 284(1-2), 17 (2006)
- Shim JK, Yoo IK, Lee YM, Process Biochem., 38, 279 (2002)
- Schoeberl P, Brik M, Bertoni M, Braun R, Fuchs W, Sep. Purif. Technol., 44(1), 61 (2005)
- Zhang YY, He C, Sharma VK, Li XZ, Tian SH, Xiong Y, Sep. Purif. Technol., 80(1), 45 (2011)
- Chen RZ, Jiang H, Jin WQ, Xu NP, Chin. J. Chem. Eng., 17(4), 648 (2009)
- Visvanathan C, Aim RB, Parameshwaran K, Crit. Rev. Env.Sci. Tec., 30, 1 (2000)
- Liu HU, Cui ZF, J. Membr. Sci., 302(1-2), 180 (2007)
- Ebrahimi M, Placido L, Engel L, Ashaghi KS, Czermak P, Desalination, 250(3), 1105 (2010)
- Dhaouadi H, Marrot B, Chem. Eng. J., 145(2), 225 (2008)
- Hasanoglu A, Romero J, Perez B, Plaza A, Chem. Eng. J., 160(2), 530 (2010)
- Yang WB, Cicek N, Ilg J, J. Membr. Sci., 270(1-2), 201 (2006)
- Wang J, Park JN, Jeong HC, Choi KS, Wei XY, Hong SI, Lee CW, Energy Fuels, 18(2), 470 (2004)
- Wilkenhoner U, Langhendries G, van Laar F, Baron GV, Gammon DW, Jacobs PA, van Steen E, J. Catal., 203(1), 201 (2001)
- Lu CJ, Chen RZ, Xing WH, Jin WQ, Xu NP, AIChE J., 54(7), 1842 (2008)
- Liu H, Lu GZ, Guo YL, Guo Y, Wang JS, Chem. Eng. J., 116(3), 179 (2006)
- Li WX, Xing WH, Xu NP, Desalination, 192(1-3), 340 (2006)
- Broeckmann A, Busch J, Wintgens T, Marquardt W, Desalination, 189(1-3), 97 (2006)
- Chen RZ, Du Y, Wang QQ, Xing WH, Jin WQ, Xu NP, Ind. Eng. Chem. Res., 48(14), 6600 (2009)
- Liu H, Lu GZ, Guo YL, Guo Y, Wang JS, Chem. Eng. J., 108(3), 187 (2005)
- Callanan LH, Burton RM, Mullineux J, Engelbrecht JMM, Rau U, Chem. Eng. J., 180, 255 (2012)
- Kumar SM, Madhu GM, Roy S, Sep. Purif. Technol., 57(1), 25 (2007)
- Li S, Li GL, Li GY, Wu G, Hu CW, Micropor. Mesopor.Mater., 143, 22 (2011)
- Zhong ZX, Xing WH, Liu X, Jin WQ, Xu NP, J. Membr. Sci., 301(1-2), 67 (2007)
- Lee SA, Choo KH, Lee CH, Lee HI, Hyeon T, Choi W, Kwon HH, Ind. Eng. Chem. Res., 40, 1712 (2011)
- Jiang H, Meng L, Chen RZ, Jin WQ, Xing WH, Xu NP, Ind. Eng. Chem. Res., 50(18), 10458 (2011)
- Yube K, Furuta M, Mae K, Catal. Today, 125(1-2), 56 (2007)