화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.2, 155-160, April, 2013
자외선 조사에 의한 Nannochloropsis oculata의 지질 축적량 향상 변이주 생성 및 특성 분석
UV-induced Mutagenesis of Nannochloropsis oculata for the Increase of Lipid Accumulation and its Characterization
E-mail:
초록
미세조류의 지질축적을 증가시키는 것에 대한 돌연변이 생성 및 분리에 관한 연구는 바이오디젤 산업에 중요한 문제이다. 본 연구에서는, 광합성 미세조류인 Nannochloropsis oculata (N. oculata)를 이용하여 자외선(UV-B 타입)으로 돌연변이를 유도하였다. 그 결과 콜로니가 생성되었고, 그 이후에 f/2 액체배지와 고체배지에 배양하였다. 몇 주간 배양 후, 변화된 세포성장률과 세포건조중량, 그리고 몇 가지 중요한 세포 구성 요소를 조사하였다. 수천 개의 변이주 중 두 개의 변이주가 야생균주에 비해서 증가된 세포성장과 높은 지질 축적을 보였다. 또한 증가된 세포성장률과 함께 단백질 과발현 현상이 관찰되었다. 그러나 돌연변이주의 클로로필 생합성의 감소를 확인 할 수 있었다.
Research on mutant generation and isolation for microalgae yielding enhanced lipid accumulation is an important issue for the production of economic biodiesel. In the present study, ultraviolet (UV-B type) ray induced mutant generation was tried using a photosynthetic microalgae, Nannochloropsis oculata (N. oculata), for the production of biodiesel. The resulting colonies were isolated and further cultured with both liquid and solid state f/2 media. After a few week cultivation, changes of cell growth rate, dry cell weight, and several important intracellular components (chlorophyll, carotenoid, and lipid) were investigated. Two mutants among thousands colonies showed an increased cell growth and high lipid accumulation as compared to those of wild type. It was also observed that the increased cell growth rate is associated with the overexpressed intracellular proteins. However, the mutants showed a decrease in the chlorophyll biosynthesis.
  1. Becker EW, Microalgae : Biotechnology and Microbiology. Cambridge University Press, Cambridge., 290 (1984)
  2. Borowitzka MA, J. Appl. Phycol., 4, 267 (1992)
  3. Noue DL, J., De Pauw N, Biotech. Adv., 6, 725 (1988)
  4. Viso AC, Pesando D, Baby C, Botanica Marina., 30, 41 (1987)
  5. Ciferri OS, Microbiol. Rev., 47, 551 (1983)
  6. Gustafson, Cardellina KRJH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GMC, Boyd MR, J. Natl. Cancer. Inst., 81, 1254 (1989)
  7. Percival E, Foyle RAJ, Carbohy. Res., 72, 165 (1989)
  8. Rossler PG, J. Phycol., 26, 393 (1990)
  9. Yun YS, Park JM, Yang JW, Biotechnol. Tech., 10, 713 (1996)
  10. Demirbas A, Pro. Ener. Comb. Sci., 33, 1 (2007)
  11. Jo BH, Cha HJ, KSBB Journal., 25, 109 (2010)
  12. Fabregas J, Maseda A, Domin A, Ferreira M, World J.Microbiol. Biotechnol., 20, 31 (2004)
  13. Park HJ, Kim YH, Lee JH, Appl. Chem. Eng., 23(5), 496 (2012)
  14. Yoo C, Kim CJ, Choi GG, Ahn CY, Choi JS, Oh HM, The Korean Journal of Microbiology., 45, 268 (2009)
  15. Kim YH, Lee JH, KSBB Journal., 27, 172 (2012)
  16. Guillard RRL, Ryther JH, Grand. Can. J. Microbiol., 3, 229 (1962)
  17. Lee SI, Park JY, Jung JG, Lee DG, Lee SH, Ha JM, Ha BJ, Lee JH, J. Life Sci., 15, 847 (2005)
  18. Chen W, Sommerfeld M, Hu QA, Bioresour. Technol., 102(1), 135 (2011)
  19. Rameshwar Sharma, Impact of Solar UV-B on Tropical Ecosystems and Agriculture. Case Study: Effect of UV-B on Rice. Proc. SEAWPIT98 & SEAWPIT2000, 1, 92 (2001)