화학공학소재연구정보센터
Transport in Porous Media, Vol.98, No.1, 209-221, 2013
Free Convection Heat Transfer From A Sphere In A Porous Medium Using A Thermal Non-equilibrium Model
This work studies the free convection heat transfer from a sphere with constant wall temperature embedded in a fluid-saturated porous medium using a thermal non-equilibrium model. The governing equations are transformed into boundary-layer partial differential equations by the coordinate transform, and the obtained governing equations are then solved by the cubic spline collocation method. The temperature distributions for fluid and solid phases are shown for different values of the porosity scaled thermal conductivity ratio, the interphase heat transfer parameter, and the streamwise coordinate. The effects of the porosity scaled thermal conductivity ratio and the interphase heat transfer parameter between solid and fluid phases on the local Nusselt numbers for fluid and solid phases are examined. Results show the local Nusset number for the porous medium can be increased by increasing the porosity scaled thermal conductivity ratio. Moreover, the thermal non-equilibrium effect is more significant for low values of the porosity scaled thermal conductivity ratio or the interphase heat transfer parameter.